論文の概要: Word-Level Explanations for Analyzing Bias in Text-to-Image Models
- arxiv url: http://arxiv.org/abs/2306.05500v1
- Date: Sat, 3 Jun 2023 21:39:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-18 13:09:04.476251
- Title: Word-Level Explanations for Analyzing Bias in Text-to-Image Models
- Title(参考訳): テキスト・画像モデルにおける単語レベル記述によるバイアスの解析
- Authors: Alexander Lin, Lucas Monteiro Paes, Sree Harsha Tanneru, Suraj
Srinivas, Himabindu Lakkaraju
- Abstract要約: Text-to-image(T2I)モデルは、人種や性別に基づいて少数派を過小評価する画像を生成することができる。
本稿では,入力プロンプトのどの単語が生成画像のバイアスの原因となるかを検討する。
- 参考スコア(独自算出の注目度): 72.71184730702086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image models take a sentence (i.e., prompt) and generate images
associated with this input prompt. These models have created award wining-art,
videos, and even synthetic datasets. However, text-to-image (T2I) models can
generate images that underrepresent minorities based on race and sex. This
paper investigates which word in the input prompt is responsible for bias in
generated images. We introduce a method for computing scores for each word in
the prompt; these scores represent its influence on biases in the model's
output. Our method follows the principle of \emph{explaining by removing},
leveraging masked language models to calculate the influence scores. We perform
experiments on Stable Diffusion to demonstrate that our method identifies the
replication of societal stereotypes in generated images.
- Abstract(参考訳): テキストから画像へのモデルは文(即ちプロンプト)を取り、この入力プロンプトに関連する画像を生成する。
これらのモデルは、受賞作品、ビデオ、さらには合成データセットなどを生み出している。
しかし、text-to-image(t2i)モデルは人種や性別に基づいてマイノリティを過小表現する画像を生成することができる。
本稿では,入力プロンプト中の単語が生成画像のバイアスの原因となるかを検討する。
本稿では,各単語のスコアをプロンプトで計算する手法を提案する。
本手法は, マスク付き言語モデルを用いて影響度を計算し, 除去によるemph{Explaining by remove}の原理に従う。
本研究では,安定拡散実験を行い,生成画像における社会ステレオタイプの再現性を示す。
関連論文リスト
- Image2Text2Image: A Novel Framework for Label-Free Evaluation of Image-to-Text Generation with Text-to-Image Diffusion Models [16.00576040281808]
本稿では,画像キャプションモデルを評価するための新しいフレームワークであるImage2Text2Imageを提案する。
高い類似度スコアは、このモデルが忠実なテキスト記述を生み出し、低いスコアは相違点を強調していることを示唆している。
本フレームワークは人手によるキャプション参照に依存しないので,画像キャプションモデルを評価する上で貴重なツールである。
論文 参考訳(メタデータ) (2024-11-08T17:07:01Z) - Regeneration Based Training-free Attribution of Fake Images Generated by
Text-to-Image Generative Models [39.33821502730661]
そこで本研究では,テキスト・ツー・イメージ・モデルによって生成された偽画像をソース・モデルに属性付けするためのトレーニング不要な手法を提案する。
テスト画像と候補画像の類似性を計算し、ランキングすることにより、画像のソースを決定することができる。
論文 参考訳(メタデータ) (2024-03-03T11:55:49Z) - Contrastive Prompts Improve Disentanglement in Text-to-Image Diffusion
Models [68.47333676663312]
テキスト・ツー・イメージ・モデルにおける画像要素のアンタングル化に有効な分類器フリーガイダンスの簡単な修正法を示す。
提案手法のキーとなる考え方は、最小限のトークンで異なる2つのプロンプトを持つ意図された要因を特徴づけることである。
我々は,(1)オブジェクトクラスで訓練されたドメイン固有拡散モデル,(2)テキスト・画像生成のための連続的なリグライクな制御,(3)ゼロショット画像エディタの性能向上の3つのシナリオにおいて,その利点を説明する。
論文 参考訳(メタデータ) (2024-02-21T03:01:17Z) - Fair Text-to-Image Diffusion via Fair Mapping [32.02815667307623]
本稿では,事前学習したテキスト・画像拡散モデルを修正する,フレキシブルでモデルに依存しない,軽量なアプローチを提案する。
暗黙的言語バイアスの問題を効果的に解決することにより、より公平で多様な画像出力を生成する。
論文 参考訳(メタデータ) (2023-11-29T15:02:01Z) - ITI-GEN: Inclusive Text-to-Image Generation [56.72212367905351]
本研究では,人書きプロンプトに基づいて画像を生成する包括的テキスト・画像生成モデルについて検討する。
いくつかの属性に対して、画像はテキストよりも概念を表現的に表現できることを示す。
Inclusive Text-to- Image GENeration に容易に利用可能な参照画像を活用する新しいアプローチ ITI-GEN を提案する。
論文 参考訳(メタデータ) (2023-09-11T15:54:30Z) - Discffusion: Discriminative Diffusion Models as Few-shot Vision and Language Learners [88.07317175639226]
本稿では,事前学習したテキストと画像の拡散モデルを数ショットの識別学習者に変換する新しい手法,DSDを提案する。
本手法は, 安定拡散モデルにおいて, 視覚情報とテキスト情報の相互影響を捉えるために, クロスアテンションスコアを用いている。
論文 参考訳(メタデータ) (2023-05-18T05:41:36Z) - Discriminative Class Tokens for Text-to-Image Diffusion Models [107.98436819341592]
自由形式のテキストの表現可能性を利用した非侵襲的な微調整手法を提案する。
本手法は,従来の微調整法と比較して高速で,クラス内の画像の収集を必要としない。
i)標準拡散モデルよりも正確で高品質な生成画像,(ii)低リソース環境でのトレーニングデータの拡張,および(iii)誘導分類器の訓練に使用されるデータ情報を明らかにする。
論文 参考訳(メタデータ) (2023-03-30T05:25:20Z) - Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [72.60554897161948]
最近のテキストと画像のマッチングモデルは、未修正画像と文の大きなコーパスに対してコントラスト学習を適用している。
本研究では、そのようなモデルを用いて、推論時に画像が与えられた記述テキストを生成する。
結果として得られたキャプションは、教師付きキャプション法によるキャプションよりもはるかに制限を受けない。
論文 参考訳(メタデータ) (2021-11-29T11:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。