論文の概要: A brief review of contrastive learning applied to astrophysics
- arxiv url: http://arxiv.org/abs/2306.05528v1
- Date: Thu, 8 Jun 2023 19:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 15:36:17.866307
- Title: A brief review of contrastive learning applied to astrophysics
- Title(参考訳): 天体物理学におけるコントラスト学習の概観
- Authors: Marc Huertas-Company, Regina Sarmiento, Johan Knapen
- Abstract要約: コントラスト学習(Contrastive Learning)は、多次元データセットから情報測定を抽出する自己教師型機械学習アルゴリズムである。
本稿では、コントラスト学習の背景にある主要な概念を要約し、天文学への最初の有望な応用についてレビューする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable tools to extract patterns from high-dimensionality spaces are
becoming more necessary as astronomical datasets increase both in volume and
complexity. Contrastive Learning is a self-supervised machine learning
algorithm that extracts informative measurements from multi-dimensional
datasets, which has become increasingly popular in the computer vision and
Machine Learning communities in recent years. To do so, it maximizes the
agreement between the information extracted from augmented versions of the same
input data, making the final representation invariant to the applied
transformations. Contrastive Learning is particularly useful in astronomy for
removing known instrumental effects and for performing supervised
classifications and regressions with a limited amount of available labels,
showing a promising avenue towards \emph{Foundation Models}. This short review
paper briefly summarizes the main concepts behind contrastive learning and
reviews the first promising applications to astronomy. We include some
practical recommendations on which applications are particularly attractive for
contrastive learning.
- Abstract(参考訳): 高次元空間からパターンを抽出する信頼性の高いツールは、天文学的なデータセットが体積と複雑さの両方を増大させるにつれて、ますます必要になってきている。
コントラスト学習は、多次元データセットから情報量を抽出する自己教師あり機械学習アルゴリズムであり、近年、コンピュータビジョンや機械学習コミュニティで人気が高まっている。
そのため、同一入力データの拡張版から抽出した情報間の一致を最大化し、最終的な表現を適用された変換に不変にする。
コントラストラーニング(Contrastive Learning)は、天文学において、既知の機器効果を除去し、限られた量のラベルで教師付き分類と回帰を行うのに特に有用である。
この短いレビュー論文は、対比学習の背後にある主要な概念を簡潔に要約し、天文学への最初の有望な応用をレビューします。
コントラスト学習に特に魅力的なアプリケーションについて、実践的な推奨事項をいくつか挙げる。
関連論文リスト
- Universal Time-Series Representation Learning: A Survey [14.340399848964662]
時系列データは、現実世界のシステムやサービスのあらゆる部分に存在する。
ディープラーニングは、時系列データから隠れたパターンや特徴を抽出する際、顕著な性能を示した。
論文 参考訳(メタデータ) (2024-01-08T08:00:04Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Metric Learning as a Service with Covariance Embedding [7.5989847759545155]
メトリック学習は、クラス内およびクラス間の類似性を最大化し、最小化する。
既存のモデルは、分離可能な埋め込み空間を得るために主に距離測度に依存する。
高性能なディープラーニングアプリケーションのためのサービスとしてメトリック学習を有効にするためには、クラス間の関係も賢明に扱うべきだ、と我々は主張する。
論文 参考訳(メタデータ) (2022-11-28T10:10:59Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Sample-Efficient Reinforcement Learning in the Presence of Exogenous
Information [77.19830787312743]
実世界の強化学習アプリケーションでは、学習者の観察空間は、その課題に関する関連情報と無関係情報の両方でユビキタスに高次元である。
本稿では,強化学習のための新しい問題設定法であるExogenous Decision Process (ExoMDP)を導入する。
内因性成分の大きさのサンプル複雑度で準最適ポリシーを学習するアルゴリズムであるExoRLを提案する。
論文 参考訳(メタデータ) (2022-06-09T05:19:32Z) - MetAug: Contrastive Learning via Meta Feature Augmentation [28.708395209321846]
対照的な学習は、情報的特徴、すなわち「堅い」(肯定的または否定的な)特徴に大きく依存している、と我々は主張する。
このような特徴を探索する上で重要な課題は、ランダムなデータ拡張を適用することで、ソースのマルチビューデータを生成することである。
本稿では,潜在空間における特徴を直接拡張し,大量の入力データなしで識別表現を学習することを提案する。
論文 参考訳(メタデータ) (2022-03-10T02:35:39Z) - Vertical Machine Unlearning: Selectively Removing Sensitive Information
From Latent Feature Space [21.8933559159369]
遅延特徴空間から機密情報のみを除去することを目的とした縦型アンラーニングモードについて検討する。
我々はこの非学習について直観的かつ形式的な定義を導入し、既存の水平的非学習との関係を示す。
厳密な理論的解析により上界の近似を推定する。
論文 参考訳(メタデータ) (2022-02-27T05:25:15Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z) - Multi-Pretext Attention Network for Few-shot Learning with
Self-supervision [37.6064643502453]
補助的なサンプルに依存しない自己教師付き学習のための,新しい拡張不要な手法を提案する。
さらに,従来の拡張信頼手法とGCを組み合わせるために,特定の注意機構を利用するマルチテキスト注意ネットワーク(MAN)を提案する。
miniImageNetおよびtieredImageNetデータセット上でMANを幅広く評価し、提案手法が最新(SOTA)関連手法より優れていることを実証した。
論文 参考訳(メタデータ) (2021-03-10T10:48:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。