Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution
- URL: http://arxiv.org/abs/2410.04224v2
- Date: Thu, 10 Oct 2024 06:00:35 GMT
- Title: Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution
- Authors: Jianze Li, Jiezhang Cao, Zichen Zou, Xiongfei Su, Xin Yuan, Yulun Zhang, Yong Guo, Xiaokang Yang,
- Abstract summary: We propose a Distillation-Free One-Step Diffusion model.
Specifically, we propose a noise-aware discriminator (NAD) to participate in adversarial training.
We improve the perceptual loss with edge-aware DISTS (EA-DISTS) to enhance the model's ability to generate fine details.
- Score: 81.81748032199813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have been achieving excellent performance for real-world image super-resolution (Real-ISR) with considerable computational costs. Current approaches are trying to derive one-step diffusion models from multi-step counterparts through knowledge distillation. However, these methods incur substantial training costs and may constrain the performance of the student model by the teacher's limitations. To tackle these issues, we propose DFOSD, a Distillation-Free One-Step Diffusion model. Specifically, we propose a noise-aware discriminator (NAD) to participate in adversarial training, further enhancing the authenticity of the generated content. Additionally, we improve the perceptual loss with edge-aware DISTS (EA-DISTS) to enhance the model's ability to generate fine details. Our experiments demonstrate that, compared with previous diffusion-based methods requiring dozens or even hundreds of steps, our DFOSD attains comparable or even superior results in both quantitative metrics and qualitative evaluations. Our DFOSD also abtains higher performance and efficiency compared with other one-step diffusion methods. We will release code and models at https://github.com/JianzeLi-114/DFOSD.
Related papers
- One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.
First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.
Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - SNOOPI: Supercharged One-step Diffusion Distillation with Proper Guidance [12.973835034100428]
This paper presents SNOOPI, a novel framework designed to enhance the guidance in one-step diffusion models during both training and inference.
By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance.
Second, we propose a training-free method called Negative-Away Steer Attention (NASA), which integrates negative prompts into one-step diffusion models via cross-attention to suppress undesired elements in generated images.
arXiv Detail & Related papers (2024-12-03T18:56:32Z) - Relational Diffusion Distillation for Efficient Image Generation [27.127061578093674]
Diffusion model's high delay hinders its wide application in edge devices with scarce computing resources.
We propose Diffusion Distillation (RDD), a novel distillation method tailored specifically for distilling diffusion models.
Our proposed RDD leads to 1.47 FID decrease under 1 sampling step compared to state-of-the-art diffusion distillation methods and achieving 256x speed-up.
arXiv Detail & Related papers (2024-10-10T07:40:51Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
We introduce a simple yet effective means of distilling diffusion models directly from initial noise to the resulting image.
Our method enables fully offline training with just noise/image pairs from the diffusion model.
We demonstrate that the DEQ architecture is crucial to this capability, as GET matches a $5times$ larger ViT in terms of FID scores.
arXiv Detail & Related papers (2023-12-12T07:28:40Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.