AI Enhanced Control Engineering Methods
- URL: http://arxiv.org/abs/2306.05545v1
- Date: Thu, 8 Jun 2023 20:31:14 GMT
- Title: AI Enhanced Control Engineering Methods
- Authors: Ion Matei, Raj Minhas, Johan de Kleer and Alexander Felman
- Abstract summary: We explore how AI tools can be useful in control applications.
Two immediate applications are linearization of system dynamics for local stability analysis or for state estimation using Kalman filters.
In addition, we explore the use of machine learning models for global parameterizations of state vectors and control inputs in model predictive control applications.
- Score: 66.08455276899578
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI and machine learning based approaches are becoming ubiquitous in almost
all engineering fields. Control engineering cannot escape this trend. In this
paper, we explore how AI tools can be useful in control applications. The core
tool we focus on is automatic differentiation. Two immediate applications are
linearization of system dynamics for local stability analysis or for state
estimation using Kalman filters. We also explore other usages such as
conversion of differential algebraic equations to ordinary differential
equations for control design. In addition, we explore the use of machine
learning models for global parameterizations of state vectors and control
inputs in model predictive control applications. For each considered use case,
we give examples and results.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Learning Environment Models with Continuous Stochastic Dynamics [0.0]
We aim to provide insights into the decisions faced by the agent by learning an automaton model of environmental behavior under the control of an agent.
In this work, we raise the capabilities of automata learning such that it is possible to learn models for environments that have complex and continuous dynamics.
We apply our automata learning framework on popular RL benchmarking environments in the OpenAI Gym, including LunarLander, CartPole, Mountain Car, and Acrobot.
arXiv Detail & Related papers (2023-06-29T12:47:28Z) - Adaptive Asynchronous Control Using Meta-learned Neural Ordinary
Differential Equations [0.0]
Real-world robotics systems often present challenges that limit the applicability of model-based Reinforcement Learning and Control.
We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control.
We present evaluations in two different robot simulations and on a real industrial robot.
arXiv Detail & Related papers (2022-07-25T11:07:29Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Comparative analysis of machine learning methods for active flow control [60.53767050487434]
Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control.
This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques.
arXiv Detail & Related papers (2022-02-23T18:11:19Z) - Hyperparameter Auto-tuning in Self-Supervised Robotic Learning [12.193817049957733]
Insufficient learning (due to convergence to local optima) results in under-performing policies whilst redundant learning wastes time and resources.
We propose an auto-tuning technique based on the Evidence Lower Bound (ELBO) for self-supervised reinforcement learning.
Our method can auto-tune online and yields the best performance at a fraction of the time and computational resources.
arXiv Detail & Related papers (2020-10-16T08:58:24Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints.
In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques.
arXiv Detail & Related papers (2020-04-15T18:15:49Z) - Explainable Machine Learning Control -- robust control and stability
analysis [0.0]
We show how to use symbolic regression methods to infer the optimal control of a dynamical system.
We show that there is a considerable advantage of explainable models over less accessible neural networks.
arXiv Detail & Related papers (2020-01-23T08:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.