Explainable Machine Learning Control -- robust control and stability
analysis
- URL: http://arxiv.org/abs/2001.10056v1
- Date: Thu, 23 Jan 2020 08:09:58 GMT
- Title: Explainable Machine Learning Control -- robust control and stability
analysis
- Authors: Markus Quade and Thomas Isele and Markus Abel
- Abstract summary: We show how to use symbolic regression methods to infer the optimal control of a dynamical system.
We show that there is a considerable advantage of explainable models over less accessible neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the term explainable AI became known as an approach to produce
models from artificial intelligence which allow interpretation. Since a long
time, there are models of symbolic regression in use that are perfectly
explainable and mathematically tractable: in this contribution we demonstrate
how to use symbolic regression methods to infer the optimal control of a
dynamical system given one or several optimization criteria, or cost functions.
In previous publications, network control was achieved by automatized machine
learning control using genetic programming. Here, we focus on the subsequent
analysis of the analytical expressions which result from the machine learning.
In particular, we use AUTO to analyze the stability properties of the
controlled oscillator system which served as our model. As a result, we show
that there is a considerable advantage of explainable models over less
accessible neural networks.
Related papers
- Model-based Policy Optimization using Symbolic World Model [46.42871544295734]
The application of learning-based control methods in robotics presents significant challenges.
One is that model-free reinforcement learning algorithms use observation data with low sample efficiency.
We suggest approximating transition dynamics with symbolic expressions, which are generated via symbolic regression.
arXiv Detail & Related papers (2024-07-18T13:49:21Z) - Physically Analyzable AI-Based Nonlinear Platoon Dynamics Modeling During Traffic Oscillation: A Koopman Approach [4.379212829795889]
There exists a critical need for a modeling methodology with high accuracy while concurrently achieving physical analyzability.
This paper proposes an AI-based Koopman approach to model the unknown nonlinear platoon dynamics harnessing the power of AI.
arXiv Detail & Related papers (2024-06-20T19:35:21Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Neural Abstractions [72.42530499990028]
We present a novel method for the safety verification of nonlinear dynamical models that uses neural networks to represent abstractions of their dynamics.
We demonstrate that our approach performs comparably to the mature tool Flow* on existing benchmark nonlinear models.
arXiv Detail & Related papers (2023-01-27T12:38:09Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Automated Learning of Interpretable Models with Quantified Uncertainty [0.0]
We introduce a new framework for genetic-programming-based symbolic regression (GPSR)
GPSR uses model evidence to formulate replacement probability during the selection phase of evolution.
It is shown to increase interpretability, improve robustness to noise, and reduce overfitting when compared to a conventional GPSR implementation.
arXiv Detail & Related papers (2022-04-12T19:56:42Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z) - A machine learning based plasticity model using proper orthogonal
decomposition [0.0]
Data-driven material models have many advantages over classical numerical approaches.
One approach to develop a data-driven material model is to use machine learning tools.
A machine learning based material modelling framework is proposed for both elasticity and plasticity.
arXiv Detail & Related papers (2020-01-07T15:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.