Reconstructing the somatotopic organization of the corticospinal tract
remains a challenge for modern tractography methods
- URL: http://arxiv.org/abs/2306.05623v2
- Date: Thu, 15 Jun 2023 03:04:37 GMT
- Title: Reconstructing the somatotopic organization of the corticospinal tract
remains a challenge for modern tractography methods
- Authors: Jianzhong He, Fan Zhang, Yiang Pan, Yuanjing Feng, Jarrett Rushmore,
Erickson Torio, Yogesh Rathi, Nikos Makris, Ron Kikinis, Alexandra J. Golby,
Lauren J. O'Donnell
- Abstract summary: The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body.
Diffusion MRI tractography is the only method that enables the study of the anatomy and variability of the CST pathway in human health.
- Score: 55.07297021627281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The corticospinal tract (CST) is a critically important white matter fiber
tract in the human brain that enables control of voluntary movements of the
body. Diffusion MRI tractography is the only method that enables the study of
the anatomy and variability of the CST pathway in human health. In this work,
we explored the performance of six widely used tractography methods for
reconstructing the CST and its somatotopic organization. We perform experiments
using diffusion MRI data from the Human Connectome Project. Four quantitative
measurements including reconstruction rate, the WM-GM interface coverage,
anatomical distribution of streamlines, and correlation with cortical volumes
to assess the advantages and limitations of each method. Overall, we conclude
that while current tractography methods have made progress toward the
well-known challenge of improving the reconstruction of the lateral projections
of the CST, the overall problem of performing a comprehensive CST
reconstruction, including clinically important projections in the lateral (hand
and face area) and medial portions (leg area), remains an important challenge
for diffusion MRI tractography.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
We advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space.
Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve tractography results.
arXiv Detail & Related papers (2024-03-04T19:56:19Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
We develop a novel Anatomy-Guided segmentation framework to exploit the auto-generated organ masks.
We extensively evaluate the proposed method on two CRC segmentation datasets.
arXiv Detail & Related papers (2023-10-07T03:22:06Z) - Solving Low-Dose CT Reconstruction via GAN with Local Coherence [2.325977856241404]
We propose a novel approach using generative adversarial networks (GANs) with enhanced local coherence.
The proposed method can capture the local coherence of adjacent images by optical flow, which yields significant improvements in the precision and stability of the constructed images.
arXiv Detail & Related papers (2023-09-24T08:55:42Z) - Meta-Analysis of Transfer Learning for Segmentation of Brain Lesions [0.0]
Manual segmentation of stroke lesions from 3D magnetic resonance (MR) imaging volumes, the current gold standard, is not only very time-consuming, but its accuracy highly depends on the operator's experience.
We have implemented and tested a fully automatic method for stroke lesion segmentation using eight different 2D-model architectures trained via transfer learning (TL) and mixed data approaches.
Cross-validation results indicate that our new method can efficiently and automatically segment lesions fast and with high accuracy compared to ground truth.
arXiv Detail & Related papers (2023-06-20T17:42:30Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Learning-Based Keypoint Registration for Fetoscopic Mosaicking [65.02392513942533]
In Twin-to-Twin Transfusion Syndrome (TTTS), abnormal vascular anastomoses in the monochorionic placenta can produce uneven blood flow between the two fetuses.
We propose a learning-based framework for in-vivo fetoscopy frame registration for field-of-view expansion.
arXiv Detail & Related papers (2022-07-26T21:21:12Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts.
Most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity.
We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient parcellation of 198 SWM clusters from whole-brain tractography.
arXiv Detail & Related papers (2022-07-18T23:07:53Z) - Localizing the Recurrent Laryngeal Nerve via Ultrasound with a Bayesian
Shape Framework [65.19784967388934]
Tumor infiltration of the recurrent laryngeal nerve (RLN) is a contraindication for robotic thyroidectomy and can be difficult to detect via standard laryngoscopy.
We propose a knowledge-driven framework for RLN localization, mimicking the standard approach surgeons take to identify the RLN according to its surrounding organs.
Experimental results indicate that the proposed method achieves superior hit rates and substantially smaller distance errors compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-06-30T13:04:42Z) - Attention-Guided Generative Adversarial Network to Address Atypical
Anatomy in Modality Transfer [3.167912607974845]
We propose a novel spatial attention-guided generative adversarial network (attention-GAN) model to generate accurate synCTs using T1-weighted MRI images.
Experimental results on fifteen brain cancer patients show that attention-GAN outperformed existing synCT models and achieved an average MAE of 85.22$pm$12.08, 232.41$pm$60.86, 246.38$pm$42.67.
arXiv Detail & Related papers (2020-06-27T02:50:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.