Deep Learning-Based Diffusion MRI Tractography: Integrating Spatial and Anatomical Information
- URL: http://arxiv.org/abs/2503.03329v1
- Date: Wed, 05 Mar 2025 10:02:35 GMT
- Title: Deep Learning-Based Diffusion MRI Tractography: Integrating Spatial and Anatomical Information
- Authors: Yiqiong Yang, Yitian Yuan, Baoxing Ren, Ye Wu, Yanqiu Feng, Xinyuan Zhang,
- Abstract summary: Diffusion MRI tractography technique enables non-invasive visualization of the white matter pathways in the brain.<n>It plays a crucial role in neuroscience and clinical fields by facilitating the study of brain connectivity and neurological disorders.<n>Deep learning methods have been applied to improve tractograms for better white matter coverage, but often comes at the expense of generating excessive false-positive connections.
- Score: 6.669798532124614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion MRI tractography technique enables non-invasive visualization of the white matter pathways in the brain. It plays a crucial role in neuroscience and clinical fields by facilitating the study of brain connectivity and neurological disorders. However, the accuracy of reconstructed tractograms has been a longstanding challenge. Recently, deep learning methods have been applied to improve tractograms for better white matter coverage, but often comes at the expense of generating excessive false-positive connections. This is largely due to their reliance on local information to predict long range streamlines. To improve the accuracy of streamline propagation predictions, we introduce a novel deep learning framework that integrates image-domain spatial information and anatomical information along tracts, with the former extracted through convolutional layers and the later modeled via a Transformer-decoder. Additionally, we employ a weighted loss function to address fiber class imbalance encountered during training. We evaluate the proposed method on the simulated ISMRM 2015 Tractography Challenge dataset, achieving a valid streamline rate of 66.2%, white matter coverage of 63.8%, and successfully reconstructing 24 out of 25 bundles. Furthermore, on the multi-site Tractoinferno dataset, the proposed method demonstrates its ability to handle various diffusion MRI acquisition schemes, achieving a 5.7% increase in white matter coverage and a 4.1% decrease in overreach compared to RNN-based methods.
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Tract-RLFormer: A Tract-Specific RL policy based Decoder-only Transformer Network [6.879358907713364]
We propose Tract-RLFormer, a network utilizing both supervised and reinforcement learning.
By employing a tract-specific approach, our network directly delineates the tracts of interest, bypassing the traditional segmentation process.
Our methodology demonstrates a leap forward in tractography, showcasing its ability to accurately map the brain's white matter tracts.
arXiv Detail & Related papers (2024-11-08T18:18:18Z) - Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI [10.096809077954095]
An incomplete field-of-view (FOV) in diffusion magnetic resonance imaging (dMRI) can severely hinder the volumetric and bundle analyses of whole-brain white matter connectivity.
We propose a novel framework for imputing dMRI scans in the incomplete part of the FOV by integrating the learned diffusion features in the acquired part of the FOV to the complete brain anatomical structure.
arXiv Detail & Related papers (2024-09-20T18:41:29Z) - Streamline tractography of the fetal brain in utero with machine learning [7.164734676863147]
This work presents the first machine learning model for fetal tractography.
We trained the model on manually-refined whole-brain fetal tractograms and validated the trained model on an independent set of 11 test scans with gestational ages between 23 and 36 weeks.
arXiv Detail & Related papers (2024-08-26T14:54:14Z) - Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
We advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space.
Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve tractography results.
arXiv Detail & Related papers (2024-03-04T19:56:19Z) - Reconstructing the somatotopic organization of the corticospinal tract
remains a challenge for modern tractography methods [55.07297021627281]
The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body.
Diffusion MRI tractography is the only method that enables the study of the anatomy and variability of the CST pathway in human health.
arXiv Detail & Related papers (2023-06-09T02:05:40Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts.
Most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity.
We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient parcellation of 198 SWM clusters from whole-brain tractography.
arXiv Detail & Related papers (2022-07-18T23:07:53Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.