Privacy Aware Question-Answering System for Online Mental Health Risk
Assessment
- URL: http://arxiv.org/abs/2306.05652v1
- Date: Fri, 9 Jun 2023 03:37:49 GMT
- Title: Privacy Aware Question-Answering System for Online Mental Health Risk
Assessment
- Authors: Prateek Chhikara, Ujjwal Pasupulety, John Marshall, Dhiraj Chaurasia,
Shweta Kumari
- Abstract summary: Social media platforms have enabled individuals suffering from mental illnesses to share their lived experiences and find the online support necessary to cope.
We propose a Question-Answering (QA) approach to assess mental health risk using the Unified-QA model on two large mental health datasets.
Our results demonstrate the effectiveness of modeling risk assessment as a QA task, specifically for mental health use cases.
- Score: 0.45935798913942893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms have enabled individuals suffering from mental
illnesses to share their lived experiences and find the online support
necessary to cope. However, many users fail to receive genuine clinical
support, thus exacerbating their symptoms. Screening users based on what they
post online can aid providers in administering targeted healthcare and minimize
false positives. Pre-trained Language Models (LMs) can assess users' social
media data and classify them in terms of their mental health risk. We propose a
Question-Answering (QA) approach to assess mental health risk using the
Unified-QA model on two large mental health datasets. To protect user data, we
extend Unified-QA by anonymizing the model training process using differential
privacy. Our results demonstrate the effectiveness of modeling risk assessment
as a QA task, specifically for mental health use cases. Furthermore, the
model's performance decreases by less than 1% with the inclusion of
differential privacy. The proposed system's performance is indicative of a
promising research direction that will lead to the development of privacy-aware
diagnostic systems.
Related papers
- Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
We present a novel personalized federated learning (pFL) method for medical visual question answering (VQA) models.
Our method introduces learnable prompts into a Transformer architecture to efficiently train it on diverse medical datasets without massive computational costs.
arXiv Detail & Related papers (2024-10-23T00:31:17Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-17T22:04:32Z) - MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
We introduce a framework for generating and evaluating large language model (LLM) based misinformation interventions.
We present (1) an experiment with a simulated social media environment to measure effectiveness of misinformation interventions, and (2) a second experiment with personalized explanations tailored to the demographics and beliefs of users.
Our findings confirm that LLM-based interventions are highly effective at correcting user behavior.
arXiv Detail & Related papers (2024-10-13T18:16:50Z) - AI-Driven Early Mental Health Screening with Limited Data: Analyzing Selfies of Pregnant Women [32.514036618021244]
Major Depressive Disorder and anxiety disorders affect millions globally, contributing significantly to the burden of mental health issues.
Early screening is crucial for effective intervention, as timely identification of mental health issues can significantly improve treatment outcomes.
This study explores the potential of AI models for ubiquitous depression-anxiety screening given face-centric selfies.
arXiv Detail & Related papers (2024-10-07T19:34:25Z) - SouLLMate: An Adaptive LLM-Driven System for Advanced Mental Health Support and Assessment, Based on a Systematic Application Survey [9.146311285410631]
Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources.
This study aims to provide accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies.
arXiv Detail & Related papers (2024-10-06T17:11:29Z) - Enhancing Mental Health Support through Human-AI Collaboration: Toward Secure and Empathetic AI-enabled chatbots [0.0]
This paper explores the potential of AI-enabled chatbots as a scalable solution.
We assess their ability to deliver empathetic, meaningful responses in mental health contexts.
We propose a federated learning framework that ensures data privacy, reduces bias, and integrates continuous validation from clinicians to enhance response quality.
arXiv Detail & Related papers (2024-09-17T20:49:13Z) - Explainable Depression Symptom Detection in Social Media [2.677715367737641]
We propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings.
Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms.
arXiv Detail & Related papers (2023-10-20T17:05:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.