One-step corrected projected stochastic gradient descent for statistical estimation
- URL: http://arxiv.org/abs/2306.05896v2
- Date: Sat, 13 Apr 2024 13:17:27 GMT
- Title: One-step corrected projected stochastic gradient descent for statistical estimation
- Authors: Alexandre Brouste, Youssef Esstafa,
- Abstract summary: It is based on the projected gradient descent on the log-likelihood function corrected by a single step of the Fisher scoring algorithm.
We show theoretically and by simulations that it is an interesting alternative to the usual gradient descent with averaging or the adaptative gradient descent.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A generic, fast and asymptotically efficient method for parametric estimation is described. It is based on the projected stochastic gradient descent on the log-likelihood function corrected by a single step of the Fisher scoring algorithm. We show theoretically and by simulations that it is an interesting alternative to the usual stochastic gradient descent with averaging or the adaptative stochastic gradient descent.
Related papers
- Limit Theorems for Stochastic Gradient Descent with Infinite Variance [47.87144151929621]
We show that the gradient descent algorithm can be characterized as the stationary distribution of a suitably defined Ornstein-rnstein process driven by an appropriate L'evy process.
We also explore the applications of these results in linear regression and logistic regression models.
arXiv Detail & Related papers (2024-10-21T09:39:10Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - On the influence of roundoff errors on the convergence of the gradient
descent method with low-precision floating-point computation [0.0]
We propose a new rounding scheme that trades the zero bias property with a larger probability to preserve small gradients.
Our method yields constant rounding bias that, at each iteration, lies in a descent direction.
arXiv Detail & Related papers (2022-02-24T18:18:20Z) - Random-reshuffled SARAH does not need a full gradient computations [61.85897464405715]
The StochAstic Recursive grAdientritHm (SARAH) algorithm is a variance reduced variant of the Gradient Descent (SGD) algorithm.
In this paper, we remove the necessity of a full gradient.
The aggregated gradients serve as an estimate of a full gradient in the SARAH algorithm.
arXiv Detail & Related papers (2021-11-26T06:00:44Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Reparametrizing gradient descent [0.0]
We propose an optimization algorithm which we call norm-adapted gradient descent.
Our algorithm can also be compared to quasi-Newton methods, but we seek roots rather than stationary points.
arXiv Detail & Related papers (2020-10-09T20:22:29Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
gradient estimation is of crucial importance in statistics and learning theory.
We consider here the classic regression setup, where a real valued square integrable r.v. $Y$ is to be predicted.
We prove nonasymptotic bounds improving upon those obtained for alternative estimation methods.
arXiv Detail & Related papers (2020-06-26T15:19:43Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Non-asymptotic bounds for stochastic optimization with biased noisy
gradient oracles [8.655294504286635]
We introduce biased gradient oracles to capture a setting where the function measurements have an estimation error.
Our proposed oracles are in practical contexts, for instance, risk measure estimation from a batch of independent and identically distributed simulation.
arXiv Detail & Related papers (2020-02-26T12:53:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.