Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data
- URL: http://arxiv.org/abs/2407.02698v1
- Date: Tue, 2 Jul 2024 22:42:45 GMT
- Title: Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data
- Authors: Feng Wang, Yaron Koral, Kenichi Futamura,
- Abstract summary: Cyber-attacks, including hijacking and spoofing, pose significant threats to connected cars.
This paper presents a novel approach for identifying potential attacks through Radio Access Network (RAN) event monitoring.
The major contribution of this paper is a location anomaly detection module that identifies devices that appear in multiple locations simultaneously.
- Score: 2.147995542780459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The cybersecurity of connected cars, integral to the broader Internet of Things (IoT) landscape, has become of paramount concern. Cyber-attacks, including hijacking and spoofing, pose significant threats to these technological advancements, potentially leading to unauthorized control over vehicular networks or creating deceptive identities. Given the difficulty of deploying comprehensive defensive logic across all vehicles, this paper presents a novel approach for identifying potential attacks through Radio Access Network (RAN) event monitoring. The major contribution of this paper is a location anomaly detection module that identifies aberrant devices that appear in multiple locations simultaneously - a potential indicator of a hijacking attack. We demonstrate how RAN-event based location anomaly detection is effective in combating malicious activity targeting connected cars. Using RAN data generated by tens of millions of connected cars, we developed a fast and efficient method for identifying potential malicious or rogue devices. The implications of this research are far-reaching. By increasing the security of connected cars, we can enhance the safety of users, provide robust defenses for the automotive industry, and improve overall cybersecurity practices for IoT devices.
Related papers
- SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
We propose SISSA, a SOME/IP communication traffic-based approach for modeling and analyzing in-vehicle functional safety and cyber security.
Specifically, SISSA models hardware failures with the Weibull distribution and addresses five potential attacks on SOME/IP communication.
Extensive experimental results show the effectiveness and efficiency of SISSA.
arXiv Detail & Related papers (2024-02-21T03:31:40Z) - Cross-Domain AI for Early Attack Detection and Defense Against Malicious Flows in O-RAN [5.196266559887213]
Cross-Domain Artificial Intelligence (AI) can be the key to address this, although its application in Open Radio Access Network (O-RAN) is still at its infancy.
Our results demonstrate the potential of the proposed approach, achieving an accuracy rate of 93%.
This approach not only bridges critical gaps in mobile network security but also showcases the potential of cross-domain AI in enhancing the efficacy of network security measures.
arXiv Detail & Related papers (2024-01-17T13:29:47Z) - Detecting stealthy cyberattacks on adaptive cruise control vehicles: A
machine learning approach [5.036807309572884]
More insidious attacks, which only slightly alter driving behavior, can result in network-wide increases in congestion, fuel consumption, and even crash risk without being easily detected.
We present a traffic model framework for three types of potential cyberattacks: malicious manipulation of vehicle control commands, false data injection attacks on sensor measurements, and denial-of-service (DoS) attacks.
A novel generative adversarial network (GAN)-based anomaly detection model is proposed for real-time identification of such attacks using vehicle trajectory data.
arXiv Detail & Related papers (2023-10-26T01:22:10Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
Intrusion Detection Systems (IDSs) that can identify malicious cyber-attacks have been developed.
We propose a novel ensemble IDS framework named Leader Class and Confidence Decision Ensemble (LCCDE)
LCCDE is constructed by determining the best-performing ML model among three advanced algorithms.
arXiv Detail & Related papers (2022-08-05T22:30:34Z) - Using EBGAN for Anomaly Intrusion Detection [13.155954231596434]
We propose an EBGAN-based intrusion detection method, IDS-EBGAN, that classifies network records as normal traffic or malicious traffic.
The generator in IDS-EBGAN is responsible for converting the original malicious network traffic in the training set into adversarial malicious examples.
During testing, IDS-EBGAN uses reconstruction error of discriminator to classify traffic records.
arXiv Detail & Related papers (2022-06-21T13:49:34Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
Modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks.
With the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically.
This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks.
arXiv Detail & Related papers (2022-05-07T03:38:26Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
We propose a security hardening system for in-vehicle networks.
The proposed system includes two mechanisms that process deep features extracted from voltage signals measured on the CAN bus.
arXiv Detail & Related papers (2021-06-15T06:12:33Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.