State of Refactoring Adoption: Better Understanding Developer Perception
of Refactoring
- URL: http://arxiv.org/abs/2306.06019v1
- Date: Fri, 9 Jun 2023 16:38:20 GMT
- Title: State of Refactoring Adoption: Better Understanding Developer Perception
of Refactoring
- Authors: Eman Abdullah AlOmar
- Abstract summary: We aim to explore how developers document their activities during the software life cycle.
We call such activity Self-Affirmed Refactoring (SAR), which indicates developers' documentation of their activities.
We propose an approach to identify whether a commit describes developer-related events to classify them according to the common quality improvement categories.
- Score: 5.516979718589074
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We aim to explore how developers document their refactoring activities during
the software life cycle. We call such activity Self-Affirmed Refactoring (SAR),
which indicates developers' documentation of their refactoring activities. SAR
is crucial in understanding various aspects of refactoring, including the
motivation, procedure, and consequences of the performed code change. After
that, we propose an approach to identify whether a commit describes
developer-related refactoring events to classify them according to the
refactoring common quality improvement categories. To complement this goal, we
aim to reveal insights into how reviewers decide to accept or reject a
submitted refactoring request and what makes such a review challenging.Our SAR
taxonomy and model can work with refactoring detectors to report any early
inconsistency between refactoring types and their documentation. They can serve
as a solid background for various empirical investigations. Our survey with
code reviewers has revealed several difficulties related to understanding the
refactoring intent and implications on the functional and non-functional
aspects of the software. In light of our findings from the industrial case
study, we recommended a procedure to properly document refactoring activities,
as part of our survey feedback.
Related papers
- Diagnosing Refactoring Dangers [0.7036032466145112]
Existing behavior preservation analyses often lack comprehensive insights into rejections and do not provide actionable solutions.
We developed a conceptual model to detect dangers, and created an Eclipse plugin based upon this model, called ReFD.
ReFD evaluates a given code to identify if these potential risks are present, making them actual risks, and employs a verdict mechanism to reduce false positives.
arXiv Detail & Related papers (2024-11-13T14:39:37Z) - Deciphering Refactoring Branch Dynamics in Modern Code Review: An Empirical Study on Qt [5.516979718589074]
This study aims to understand the review process for changes in the Refactor branch and to identify what developers care about when reviewing code in this branch.
We find that reviews involving from the Refactor branch take significantly less time to resolve in terms of code review.
Additionally, documentation of developer intent is notably sparse within the Refactor branch compared to other branches.
arXiv Detail & Related papers (2024-10-07T01:18:56Z) - In Search of Metrics to Guide Developer-Based Refactoring Recommendations [13.063733696956678]
Motivation is a well-established approach to improving source code quality without compromising its external behavior.
We propose an empirical study into the metrics that study the developer's willingness to apply operations.
We will quantify the value of product and process metrics in grasping developers' motivations to perform.
arXiv Detail & Related papers (2024-07-25T16:32:35Z) - On The Importance of Reasoning for Context Retrieval in Repository-Level Code Editing [82.96523584351314]
We decouple the task of context retrieval from the other components of the repository-level code editing pipelines.
We conclude that while the reasoning helps to improve the precision of the gathered context, it still lacks the ability to identify its sufficiency.
arXiv Detail & Related papers (2024-06-06T19:44:17Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - Automating Source Code Refactoring in the Classroom [15.194527511076725]
This paper discusses the results of an experiment in the that involved carrying out various classroom activities for the purpose of removing antipatterns using Jodorant, an Eclipse plugin that supports antipatterns detection and correction.
The results of the quantitative and qualitative analysis with 171 students show that students tend to appreciate the idea of learning, and are satisfied with various aspects of the JDeodorant plugin's operation.
arXiv Detail & Related papers (2023-11-05T18:46:00Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - RefBERT: A Two-Stage Pre-trained Framework for Automatic Rename
Refactoring [57.8069006460087]
We study automatic rename on variable names, which is considered more challenging than other rename activities.
We propose RefBERT, a two-stage pre-trained framework for rename on variable names.
We show that the generated variable names of RefBERT are more accurate and meaningful than those produced by the existing method.
arXiv Detail & Related papers (2023-05-28T12:29:39Z) - Do code refactorings influence the merge effort? [80.1936417993664]
Multiple contributors frequently change the source code in parallel to implement new features, fix bugs, existing code, and make other changes.
These simultaneous changes need to be merged into the same version of the source code.
Studies show that 10 to 20 percent of all merge attempts result in conflicts, which require the manual developer's intervention to complete the process.
arXiv Detail & Related papers (2023-05-10T13:24:59Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - How We Refactor and How We Document it? On the Use of Supervised Machine
Learning Algorithms to Classify Refactoring Documentation [25.626914797750487]
Refactoring is the art of improving the design of a system without altering its external behavior.
This study categorizes commits into 3 categories, namely, Internal QA, External QA, and Code Smell Resolution, along with the traditional BugFix and Functional categories.
To better understand our classification results, we analyzed commit messages to extract patterns that developers regularly use to describe their smells.
arXiv Detail & Related papers (2020-10-26T20:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.