Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection
- URL: http://arxiv.org/abs/2310.11511v1
- Date: Tue, 17 Oct 2023 18:18:32 GMT
- Title: Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection
- Authors: Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, Hannaneh Hajishirzi
- Abstract summary: We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
- Score: 74.51523859064802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their remarkable capabilities, large language models (LLMs) often
produce responses containing factual inaccuracies due to their sole reliance on
the parametric knowledge they encapsulate. Retrieval-Augmented Generation
(RAG), an ad hoc approach that augments LMs with retrieval of relevant
knowledge, decreases such issues. However, indiscriminately retrieving and
incorporating a fixed number of retrieved passages, regardless of whether
retrieval is necessary, or passages are relevant, diminishes LM versatility or
can lead to unhelpful response generation. We introduce a new framework called
Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's
quality and factuality through retrieval and self-reflection. Our framework
trains a single arbitrary LM that adaptively retrieves passages on-demand, and
generates and reflects on retrieved passages and its own generations using
special tokens, called reflection tokens. Generating reflection tokens makes
the LM controllable during the inference phase, enabling it to tailor its
behavior to diverse task requirements. Experiments show that Self-RAG (7B and
13B parameters) significantly outperforms state-of-the-art LLMs and
retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG
outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA,
reasoning and fact verification tasks, and it shows significant gains in
improving factuality and citation accuracy for long-form generations relative
to these models.
Related papers
- DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)
By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.
Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models [31.769428095250912]
Auto-RAG is an autonomous iterative retrieval model centered on the reasoning capabilities of Large Language Models (LLMs)
We develop a method for autonomously synthesizing reasoning-based decision-making instructions in iterative retrieval.
Auto-RAG expresses the iterative retrieval process in natural language, enhancing interpretability.
arXiv Detail & Related papers (2024-11-29T03:01:05Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs)
We propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency.
arXiv Detail & Related papers (2024-10-08T08:34:54Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.