Neural FIM for learning Fisher Information Metrics from point cloud data
- URL: http://arxiv.org/abs/2306.06062v2
- Date: Mon, 12 Jun 2023 00:37:58 GMT
- Title: Neural FIM for learning Fisher Information Metrics from point cloud data
- Authors: Oluwadamilola Fasina, Guillaume Huguet, Alexander Tong, Yanlei Zhang,
Guy Wolf, Maximilian Nickel, Ian Adelstein, Smita Krishnaswamy
- Abstract summary: We propose neural FIM, a method for computing the Fisher information metric (FIM) from point cloud data.
We demonstrate its utility in selecting parameters for the PHATE visualization method as well as its ability to obtain information pertaining to local volume illuminating branching points and cluster centers embeddings of a toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs (immune cells)
- Score: 71.07939200676199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although data diffusion embeddings are ubiquitous in unsupervised learning
and have proven to be a viable technique for uncovering the underlying
intrinsic geometry of data, diffusion embeddings are inherently limited due to
their discrete nature. To this end, we propose neural FIM, a method for
computing the Fisher information metric (FIM) from point cloud data - allowing
for a continuous manifold model for the data. Neural FIM creates an extensible
metric space from discrete point cloud data such that information from the
metric can inform us of manifold characteristics such as volume and geodesics.
We demonstrate Neural FIM's utility in selecting parameters for the PHATE
visualization method as well as its ability to obtain information pertaining to
local volume illuminating branching points and cluster centers embeddings of a
toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs
(immune cells).
Related papers
- Pullback Flow Matching on Data Manifolds [10.187244125099479]
Pullback Flow Matching (PFM) is a framework for generative modeling on data manifold.
We demonstrate PFM's effectiveness through applications in synthetic, data dynamics and protein sequence data, generating novel proteins with specific properties.
This method shows strong potential for drug discovery and materials science, where generating novel samples with specific properties is of great interest.
arXiv Detail & Related papers (2024-10-06T16:41:26Z) - Manifold Learning via Foliations and Knowledge Transfer [0.0]
We provide a natural geometric structure on the space of data employing a deep ReLU neural network trained as a classifier.
We show that the singular points of such foliation are contained in a measure zero set, and that a local regular foliation exists almost everywhere.
Experiments show that the data is correlated with leaves of such foliation.
arXiv Detail & Related papers (2024-09-11T16:53:53Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - On the Interplay of Subset Selection and Informed Graph Neural Networks [3.091456764812509]
This work focuses on predicting the molecules atomization energy in the QM9 dataset.
We show how maximizing molecular diversity in the training set selection process increases the robustness of linear and nonlinear regression techniques.
We also check the reliability of the predictions made by the graph neural network with a model-agnostic explainer.
arXiv Detail & Related papers (2023-06-15T09:09:27Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
We design a novel sparse latent point diffusion model for mesh generation.
Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead.
Our proposed sparse latent point diffusion model achieves superior performance in terms of generation quality and controllability.
arXiv Detail & Related papers (2023-03-14T14:25:29Z) - Convolutional Neural Networks on Manifolds: From Graphs and Back [122.06927400759021]
We propose a manifold neural network (MNN) composed of a bank of manifold convolutional filters and point-wise nonlinearities.
To sum up, we focus on the manifold model as the limit of large graphs and construct MNNs, while we can still bring back graph neural networks by the discretization of MNNs.
arXiv Detail & Related papers (2022-10-01T21:17:39Z) - Learning a Self-Expressive Network for Subspace Clustering [15.096251922264281]
We propose a novel framework for subspace clustering, termed Self-Expressive Network (SENet), which employs a properly designed neural network to learn a self-expressive representation of the data.
Our SENet can not only learn the self-expressive coefficients with desired properties on the training data, but also handle out-of-sample data.
In particular, SENet yields highly competitive performance on MNIST, Fashion MNIST and Extended MNIST and state-of-the-art performance on CIFAR-10.
arXiv Detail & Related papers (2021-10-08T18:06:06Z) - A Multiscale Environment for Learning by Diffusion [9.619814126465206]
We introduce the Multiscale Environment for Learning by Diffusion (MELD) data model.
We show that the MELD data model precisely captures latent multiscale structure in data and facilitates its analysis.
To efficiently learn the multiscale structure observed in many real datasets, we introduce the Multiscale Learning by Unsupervised Diffusion (M-LUND) clustering algorithm.
arXiv Detail & Related papers (2021-01-31T17:46:19Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.