On the Interplay of Subset Selection and Informed Graph Neural Networks
- URL: http://arxiv.org/abs/2306.10066v1
- Date: Thu, 15 Jun 2023 09:09:27 GMT
- Title: On the Interplay of Subset Selection and Informed Graph Neural Networks
- Authors: Niklas Breustedt, Paolo Climaco, Jochen Garcke, Jan Hamaekers, Gitta
Kutyniok, Dirk A. Lorenz, Rick Oerder, Chirag Varun Shukla
- Abstract summary: This work focuses on predicting the molecules atomization energy in the QM9 dataset.
We show how maximizing molecular diversity in the training set selection process increases the robustness of linear and nonlinear regression techniques.
We also check the reliability of the predictions made by the graph neural network with a model-agnostic explainer.
- Score: 3.091456764812509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning techniques paired with the availability of massive datasets
dramatically enhance our ability to explore the chemical compound space by
providing fast and accurate predictions of molecular properties. However,
learning on large datasets is strongly limited by the availability of
computational resources and can be infeasible in some scenarios. Moreover, the
instances in the datasets may not yet be labelled and generating the labels can
be costly, as in the case of quantum chemistry computations. Thus, there is a
need to select small training subsets from large pools of unlabelled data
points and to develop reliable ML methods that can effectively learn from small
training sets. This work focuses on predicting the molecules atomization energy
in the QM9 dataset. We investigate the advantages of employing domain
knowledge-based data sampling methods for an efficient training set selection
combined with informed ML techniques. In particular, we show how maximizing
molecular diversity in the training set selection process increases the
robustness of linear and nonlinear regression techniques such as kernel methods
and graph neural networks. We also check the reliability of the predictions
made by the graph neural network with a model-agnostic explainer based on the
rate distortion explanation framework.
Related papers
- Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning [79.75718786477638]
We exploit the specialty of molecular tasks that there are physical laws connecting them, and design consistency training approaches.
We demonstrate that the more accurate energy data can improve the accuracy of structure prediction.
We also find that consistency training can directly leverage force and off-equilibrium structure data to improve structure prediction.
arXiv Detail & Related papers (2024-10-14T03:11:33Z) - chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics [0.0]
Neural Networks (NNs) are promising models for refining the accuracy of molecular dynamics.
Chemtrain is a framework to learn sophisticated NN potential models through customizable training routines and advanced training algorithms.
arXiv Detail & Related papers (2024-08-28T15:14:58Z) - Hybrid Quantum Graph Neural Network for Molecular Property Prediction [0.17747993681679466]
We develop a free hybrid quantum gradient classical convoluted graph neural network to predict formation energies of perovskite materials.
Our study suggests a new pathway to explore how quantum feature encoding and parametric quantum circuits can yield drastic improvements of complex machine learning algorithms.
arXiv Detail & Related papers (2024-05-08T16:43:25Z) - Transfer Learning for Molecular Property Predictions from Small Data Sets [0.0]
We benchmark common machine learning models for the prediction of molecular properties on two small data sets.
We present a transfer learning strategy that uses large data sets to pre-train the respective models and allows to obtain more accurate models after fine-tuning on the original data sets.
arXiv Detail & Related papers (2024-04-20T14:25:34Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
We propose a transfer learning algorithm that leverages the ability of graph neural networks (GNNs) to represent chemical environments together with kernel mean embeddings.
We test our approach on a series of realistic datasets of increasing complexity, showing excellent generalization and transferability performance.
arXiv Detail & Related papers (2023-06-02T14:58:16Z) - Neural FIM for learning Fisher Information Metrics from point cloud data [71.07939200676199]
We propose neural FIM, a method for computing the Fisher information metric (FIM) from point cloud data.
We demonstrate its utility in selecting parameters for the PHATE visualization method as well as its ability to obtain information pertaining to local volume illuminating branching points and cluster centers embeddings of a toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs (immune cells)
arXiv Detail & Related papers (2023-06-01T17:36:13Z) - Transfer learning for chemically accurate interatomic neural network
potentials [0.0]
We show that pre-training the network parameters on data obtained from density functional calculations improves the sample efficiency of models trained on more accurate ab-initio data.
We provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.
arXiv Detail & Related papers (2022-12-07T19:21:01Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.