論文の概要: ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks
- arxiv url: http://arxiv.org/abs/2306.06196v2
- Date: Tue, 19 Sep 2023 14:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 19:39:39.685712
- Title: ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks
- Title(参考訳): ElectroCardioGuard: ニューラルネットを用いた心電図データベースにおける患者の誤診防止
- Authors: Michal Sej\'ak, Jakub Sido, David \v{Z}ahour
- Abstract要約: 臨床的には, 誤診患者に対する心電図記録の割り当ては不注意に発生することがある。
本稿では,2つの心電図が同一患者に由来するかどうかを判定する,小型で効率的な神経ネットワークモデルを提案する。
PTB-XL 上でのギャラリープローブによる患者識別において、760 倍のパラメータを用いて最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electrocardiograms (ECGs) are commonly used by cardiologists to detect
heart-related pathological conditions. Reliable collections of ECGs are crucial
for precise diagnosis. However, in clinical practice, the assignment of
captured ECG recordings to incorrect patients can occur inadvertently. In
collaboration with a clinical and research facility which recognized this
challenge and reached out to us, we present a study that addresses this issue.
In this work, we propose a small and efficient neural-network based model for
determining whether two ECGs originate from the same patient. Our model
demonstrates great generalization capabilities and achieves state-of-the-art
performance in gallery-probe patient identification on PTB-XL while utilizing
760x fewer parameters. Furthermore, we present a technique leveraging our model
for detection of recording-assignment mistakes, showcasing its applicability in
a realistic scenario. Finally, we evaluate our model on a newly collected ECG
dataset specifically curated for this study, and make it public for the
research community.
- Abstract(参考訳): 心電図(Electrocardiograms, ECGs)は、心疾患の診断に用いられる。
信頼性の高い心電図の収集は正確な診断に不可欠である。
しかし, 臨床では不適切な患者に対する心電図記録の割り当てが不注意に発生することがある。
そこで本研究では, この課題を認識し, 当院に接触した臨床研究機関と共同で, この問題に対処した研究を紹介する。
本研究では,2つの心電図が同一患者に由来するかどうかを判定する,小型で効率的な神経ネットワークモデルを提案する。
本モデルは, PTB-XL 上でのギャラリープローブによる患者識別において, 760 倍少ないパラメータを用いて, 高い一般化能力を示し, 最先端の性能を実現する。
さらに,本モデルを用いて記録符号誤りの検出を行い,現実的シナリオにおけるその適用可能性を示す手法を提案する。
最後に,本研究用に新たに収集したECGデータセットを用いて,本モデルを評価し,研究コミュニティに公開する。
関連論文リスト
- Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study [43.28613210217385]
我々は、PCGデータを生成するために、最先端の3つの生成モデルを採用し、比較する。
その結果,生成したPCGデータは元のデータセットによく似ていることがわかった。
今後の研究では、この手法をデータ拡張パイプラインに組み込んで、異常なPCG信号を心臓の大腿骨で合成する予定である。
論文 参考訳(メタデータ) (2024-12-17T18:07:40Z) - Electrocardiogram (ECG) Based Cardiac Arrhythmia Detection and Classification using Machine Learning Algorithms [0.0]
機械学習(ML)と深層学習(DL)は、診断、予後、重篤な健康状態の治療を改善するために、医学の新たな展望を開いている。
本稿では,不整脈心電図(ECG)信号を分類するための予測精度の高いMLモデルの開発に着目する。
論文 参考訳(メタデータ) (2024-12-07T08:29:44Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Prospects for AI-Enhanced ECG as a Unified Screening Tool for Cardiac and Non-Cardiac Conditions -- An Explorative Study in Emergency Care [0.9503773054285559]
本研究は,救急部門で収集した心電図に基づいて,心臓および非心臓の退院診断の多様な範囲を予測できる単一モデルの有用性について検討する。
その結果,AUROCスコア0.8を超えるという意味では,253,81心,172非心,ICD符号を統計的に有意に予測できることがわかった。
論文 参考訳(メタデータ) (2023-12-18T09:29:42Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
本稿では,ECG信号の自動診断のためのGAN(Generative Adversarial Network)を用いた2階層型階層型ディープラーニングフレームワークを提案する。
第1レベルのモデルはメモリ拡張DeepオートエンコーダとGANで構成されており、異常信号と通常のECGを区別して異常検出を行う。
第2レベルの学習は、異なる不整脈識別のための堅牢な多クラス分類を目指している。
論文 参考訳(メタデータ) (2022-10-19T12:29:05Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
我々は、深層学習に基づく心電図解析に臨床知識を提供するために、畳み込みニューラルネットワークにいくつかのルールを導入する。
我々の新しいアプローチは、既存の最先端の手法をかなり上回っている。
論文 参考訳(メタデータ) (2022-06-16T04:42:57Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。