論文の概要: A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering
- arxiv url: http://arxiv.org/abs/2306.06211v4
- Date: Sat, 19 Oct 2024 13:37:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:26.243767
- Title: A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering
- Title(参考訳): Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering
- Authors: Chaoning Zhang, Joseph Cho, Fachrina Dewi Puspitasari, Sheng Zheng, Chenghao Li, Yu Qiao, Taegoo Kang, Xinru Shan, Chenshuang Zhang, Caiyan Qin, Francois Rameau, Lik-Hang Lee, Sung-Ho Bae, Choong Seon Hong,
- Abstract要約: Meta AI Researchが開発したSegment Anything Model (SAM)は、画像とビデオのセグメンテーションのための堅牢なフレームワークを提供する。
このサーベイはSAMファミリーの包括的調査を提供し、SAMとSAM 2は粒度と文脈理解の進歩を強調している。
- 参考スコア(独自算出の注目度): 49.732628643634975
- License:
- Abstract: The Segment Anything Model (SAM), developed by Meta AI Research, represents a significant breakthrough in computer vision, offering a robust framework for image and video segmentation. This survey provides a comprehensive exploration of the SAM family, including SAM and SAM 2, highlighting their advancements in granularity and contextual understanding. Our study demonstrates SAM's versatility across a wide range of applications while identifying areas where improvements are needed, particularly in scenarios requiring high granularity and in the absence of explicit prompts. By mapping the evolution and capabilities of SAM models, we offer insights into their strengths and limitations and suggest future research directions, including domain-specific adaptations and enhanced memory and propagation mechanisms. We believe that this survey comprehensively covers the breadth of SAM's applications and challenges, setting the stage for ongoing advancements in segmentation technology.
- Abstract(参考訳): Meta AI Researchが開発したSegment Anything Model (SAM)は、コンピュータビジョンにおける重要なブレークスルーであり、画像とビデオのセグメンテーションのための堅牢なフレームワークを提供する。
このサーベイはSAMファミリーの包括的調査を提供し、SAMとSAM 2は粒度と文脈理解の進歩を強調している。
本研究は,特に粒度の高い場合や明示的なプロンプトが欠如している場合において,SAMの汎用性を幅広いアプリケーションに適用し,改善が必要な領域を特定しながら示すものである。
SAMモデルの進化と能力のマッピングにより、その強みと限界についての洞察を提供し、ドメイン固有の適応やメモリと伝播機構の強化など、今後の研究方向性を提案する。
この調査はSAMの応用と課題の幅を包括的にカバーし、セグメンテーション技術の進歩の段階を定めていると信じている。
関連論文リスト
- On Efficient Variants of Segment Anything Model: A Survey [63.127753705046]
Segment Anything Model (SAM) は画像分割タスクの基本モデルであり、多様なアプリケーションにまたがる強力な一般化で知られている。
これを解決するために、精度を保ちながら効率を高めるために様々なSAM変種が提案されている。
この調査は、これらの効率的なSAM変種に関する最初の包括的なレビューを提供する。
論文 参考訳(メタデータ) (2024-10-07T11:59:54Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) は、強力なセグメンテーションと一般化機能を提供する視覚的基本モデルとして提案されている。
実物検出のためのMDSAM(Multi-scale and Detail-enhanced SAM)を提案する。
実験により,複数のSODデータセット上でのモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-08-08T09:09:37Z) - Segment Anything for Videos: A Systematic Survey [52.28931543292431]
最近のファンデーションモデルの波は、コンピュータビジョン(CV)などにおいて大きな成功を収めている。
セグメンテーション・アズ・モデル(SAM)はタスクに依存しない視覚基盤モデルを探究する情熱を喚起した。
本研究は,基礎モデル時代のビデオに対するSAMの体系的レビューを行う。
論文 参考訳(メタデータ) (2024-07-31T02:24:53Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM)は、オープンワールドシナリオにおいて、プロンプトのガイダンスによって、その印象的な一般化機能を実証した。
オープンコンテキストにSAMをアライメントするための自動プロンプトのための新しいフレームワークAlignSAMを提案する。
論文 参考訳(メタデータ) (2024-06-01T16:21:39Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.42565443181017]
Segment Anything Model (SAM)は、新しいパラダイムビジョン基盤モデルとして登場した。
SAMは様々な領域で応用や適応を発見できるが、その主な制限はオブジェクトの意味を把握できないことである。
我々は,SAMとオープン語彙オブジェクト検出器をエンドツーエンドフレームワークでシームレスに統合するSamborを提案する。
論文 参考訳(メタデータ) (2023-12-06T17:19:00Z) - A Comprehensive Survey on Segment Anything Model for Vision and Beyond [7.920790211915402]
幅広いデータに基づいて訓練された基礎モデルと呼ばれる、一般的なモデルのクラスを設計することは緊急である。
最近提案されたセグメンテーションモデル(SAM)は、セグメンテーションの境界を破る大きな進歩を遂げた。
本稿では,SAMを含む基礎モデルの背景と用語,およびSAMと同種の最先端手法について紹介する。
論文 参考訳(メタデータ) (2023-05-14T16:23:22Z) - Segment Anything Is Not Always Perfect: An Investigation of SAM on
Different Real-world Applications [31.31905890353516]
最近、Meta AI Researchは、前例のない大規模なセグメンテーションデータセット(SA-1B)で事前訓練された、一般的な、プロンプト可能なセグメンテーションモデル(SAM)にアプローチしている。
特に,自然画像,農業,製造業,リモートセンシング,医療などの分野において,SAMの性能に関する興味深い調査を行っている。
論文 参考訳(メタデータ) (2023-04-12T10:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。