論文の概要: Boosting GUI Prototyping with Diffusion Models
- arxiv url: http://arxiv.org/abs/2306.06233v1
- Date: Fri, 9 Jun 2023 20:08:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 20:21:30.587705
- Title: Boosting GUI Prototyping with Diffusion Models
- Title(参考訳): 拡散モデルを用いたGUIプロトタイピングの高速化
- Authors: Jialiang Wei, Anne-Lise Courbis, Thomas Lambolais, Binbin Xu, Pierre
Louis Bernard, G\'erard Dray
- Abstract要約: Stable Diffusionのようなディープラーニングモデルは、強力なテキスト・ツー・イメージツールとして登場した。
安定拡散を利用してモバイルUIを生成するアプローチであるUI-Diffuserを提案する。
予備的な結果は、UI-DiffuserがモバイルGUI設計を生成するための効率的でコスト効率の良い方法を提供することを示している。
- 参考スコア(独自算出の注目度): 0.440401067183266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GUI (graphical user interface) prototyping is a widely-used technique in
requirements engineering for gathering and refining requirements, reducing
development risks and increasing stakeholder engagement. However, GUI
prototyping can be a time-consuming and costly process. In recent years, deep
learning models such as Stable Diffusion have emerged as a powerful
text-to-image tool capable of generating detailed images based on text prompts.
In this paper, we propose UI-Diffuser, an approach that leverages Stable
Diffusion to generate mobile UIs through simple textual descriptions and UI
components. Preliminary results show that UI-Diffuser provides an efficient and
cost-effective way to generate mobile GUI designs while reducing the need for
extensive prototyping efforts. This approach has the potential to significantly
improve the speed and efficiency of GUI prototyping in requirements
engineering.
- Abstract(参考訳): gui(graphical user interface)プロトタイピング(プロトタイピング)は,要件の収集と洗練,開発リスクの低減,ステークホルダの関与の増大といった,要件エンジニアリングにおいて広く使用されているテクニックである。
しかし、GUIプロトタイピングは時間がかかるしコストもかかる。
近年、安定拡散などのディープラーニングモデルが、テキストプロンプトに基づいて詳細な画像を生成する強力なテキスト対画像ツールとして登場している。
本稿では,Stable Diffusionを利用したシンプルなテキスト記述とUIコンポーネントによるモバイルUI生成手法であるUI-Diffuserを提案する。
予備的な結果から、UI-Diffuserは、広範囲なプロトタイピング作業の必要を減らしながら、モバイルGUIデザインを生成するための効率的でコスト効率の良い方法を提供する。
このアプローチは、要求工学におけるGUIプロトタイピングのスピードと効率を大幅に改善する可能性がある。
関連論文リスト
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
グラフィカルユーザインタフェース(GUI)アシスタントの構築は、人間のワークフロー生産性を向上させるための大きな約束である。
デジタルワールドにおける視覚言語アクションモデル、すなわちShowUIを開発し、以下のイノベーションを特徴とする。
256Kデータを使用した軽量な2BモデルであるShowUIは、ゼロショットのスクリーンショットグラウンドで75.1%の精度を実現している。
論文 参考訳(メタデータ) (2024-11-26T14:29:47Z) - Self-Elicitation of Requirements with Automated GUI Prototyping [12.281152349482024]
SERGUIは、自動GUIプロトタイピングアシスタントに基づく、要求の自己適用を可能にする新しいアプローチである。
SerGUIは、NLR(Natural Language Requirements)ベースのGUI検索を通じて、大規模なGUIリポジトリに具現化された膨大なプロトタイピング知識を活用する。
提案手法の有効性を評価するため,予備評価を行った。
論文 参考訳(メタデータ) (2024-09-24T18:40:38Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - Interlinking User Stories and GUI Prototyping: A Semi-Automatic LLM-based Approach [55.762798168494726]
グラフィカルユーザインタフェース(GUI)のプロトタイプにおいて,機能的NLベースの要求の実装を検証するための新しい言語モデル(LLM)ベースのアプローチを提案する。
提案手法は,GUIプロトタイプに実装されていない機能的ユーザストーリの検出と,要件を直接実装する適切なGUIコンポーネントのレコメンデーションを提供することを目的としている。
論文 参考訳(メタデータ) (2024-06-12T11:59:26Z) - Tell Me What's Next: Textual Foresight for Generic UI Representations [65.10591722192609]
We propose Textual Foresight, a novel pretraining objective for learn UI screen representations。
Textual Foresightは、現在のUIとローカルアクションを考慮すれば、将来のUI状態のグローバルなテキスト記述を生成する。
新たに構築したモバイルアプリデータセットであるOpenAppでトレーニングを行い、アプリUI表現学習のための最初の公開データセットを作成しました。
論文 参考訳(メタデータ) (2024-06-12T02:43:19Z) - From Pixels to UI Actions: Learning to Follow Instructions via Graphical
User Interfaces [66.85108822706489]
本稿では,人間がよく使う概念的インタフェースを用いて,デジタル世界と対話するエージェントを作成することに焦点を当てる。
このようなエージェントは、タスクに従うGUIベースの命令のMiniWob++ベンチマークで、人間のクラウドワーカーより優れています。
論文 参考訳(メタデータ) (2023-05-31T23:39:18Z) - GUILGET: GUI Layout GEneration with Transformer [26.457270239234383]
目標は、現実的で多様なGUIレイアウトを生成することで、GUI設計の最初のステップをサポートすることである。
GUILGETは、GUI-AGの要素間の関係のセマンティクスをキャプチャするために、トランスフォーマーに基づいている。
CLAYデータセットを用いて実験を行った結果,GUI-AGから関係を最もよく理解したモデルであることが判明した。
論文 参考訳(メタデータ) (2023-04-18T14:27:34Z) - VINS: Visual Search for Mobile User Interface Design [66.28088601689069]
本稿では、UIイメージを入力として、視覚的に類似したデザイン例を検索するビジュアル検索フレームワークVINSを紹介する。
このフレームワークは、平均平均精度76.39%のUI検出を実現し、類似したUI設計をクエリする際の高いパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-02-10T01:46:33Z) - GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial
Networks [0.0]
GUI設計を自動生成するモデルGUIGANを開発した。
私たちのモデルは、Frechet Inception distance (FID) の30.77%、および1-Nearest Neighbor Accuracy (1-NNA) の12.35%のベースライン法を著しく上回る。
論文 参考訳(メタデータ) (2021-01-25T09:42:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。