論文の概要: Everybody Compose: Deep Beats To Music
- arxiv url: http://arxiv.org/abs/2306.06284v1
- Date: Fri, 9 Jun 2023 22:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 19:52:06.489081
- Title: Everybody Compose: Deep Beats To Music
- Title(参考訳): 誰もが作曲する音楽のディープビート
- Authors: Conghao Shen, Violet Z. Yao, Yixin Liu
- Abstract要約: 本研究は,入力ビートに基づくモノラルな旋律を生成するための深層学習手法を提案する。
キーボードをタップしたり、既存の作品のビートシーケンスを塗り替えたりすることで、誰でも独自の音楽を作ることができます。
- 参考スコア(独自算出の注目度): 12.33448690627466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This project presents a deep learning approach to generate monophonic
melodies based on input beats, allowing even amateurs to create their own music
compositions. Three effective methods - LSTM with Full Attention, LSTM with
Local Attention, and Transformer with Relative Position Representation - are
proposed for this novel task, providing great variation, harmony, and structure
in the generated music. This project allows anyone to compose their own music
by tapping their keyboards or ``recoloring'' beat sequences from existing
works.
- Abstract(参考訳): このプロジェクトは、入力ビートに基づいて単音節の旋律を生成するためのディープラーニングアプローチを示し、アマチュアでも独自の楽曲を作成できるようにしている。
本手法では, フルアテンション付きLSTM, ローカルアテンション付きLSTM, 相対位置表現付きトランスフォーマーの3つの有効手法を提案する。
このプロジェクトでは、既存の作品からキーボードや'recoloring'ビートシーケンスをタップすることで、誰でも独自の楽曲を作成できる。
関連論文リスト
- ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - MusicLDM: Enhancing Novelty in Text-to-Music Generation Using
Beat-Synchronous Mixup Strategies [32.482588500419006]
我々は,静的拡散とAudioLDMアーキテクチャを音楽領域に適応させる,最先端のテキスト・音楽モデルMusicLDMを構築した。
我々は、ビート同期オーディオミキサップとビート同期潜在ミキサップという、データ拡張のための2つの異なるミックスアップ戦略を提案する。
一般的な評価指標に加えて,CLAPスコアに基づくいくつかの新しい評価指標を設計し,提案したMusicLDMとビート同期ミックスアップ手法が生成した楽曲の品質とノベルティの両方を改善することを示す。
論文 参考訳(メタデータ) (2023-08-03T05:35:37Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Melody transcription via generative pre-training [86.08508957229348]
メロディの書き起こしの鍵となる課題は、様々な楽器のアンサンブルや音楽スタイルを含む幅広いオーディオを処理できる方法を構築することである。
この課題に対処するために、広帯域オーディオの生成モデルであるJukebox(Dhariwal et al. 2020)の表現を活用する。
広義音楽のクラウドソースアノテーションから50ドル(約5,400円)のメロディ書き起こしを含む新しいデータセットを導出する。
論文 参考訳(メタデータ) (2022-12-04T18:09:23Z) - MR4MR: Mixed Reality for Melody Reincarnation [0.0]
MR4MRは、周囲の空間との相互作用から発生するメロディを体験できる音のインストレーション作業である。
MRヘッドマウントディスプレイであるHoloLensを使えば、ユーザーは周囲の実際の物体に対して音を発する仮想オブジェクトを打つことができる。
そして、オブジェクトが生成した音に従ってメロディを連続的に生成し、音楽生成機械学習モデルを用いて、ランダムに生成し、徐々に変化するメロディを再現することにより、ユーザは周囲のメロディを「リカルネーティング」と感じることができる。
論文 参考訳(メタデータ) (2022-09-15T03:23:29Z) - Contrastive Learning with Positive-Negative Frame Mask for Music
Representation [91.44187939465948]
本稿では,PEMRと略記したコントラッシブラーニングフレームワークに基づく,音楽表現のための正負負のフレームマスクを提案する。
我々は,同じ音楽からサンプリングした自己増強陽性/陰性の両方に対応するために,新しいコントラスト学習目標を考案した。
論文 参考訳(メタデータ) (2022-03-17T07:11:42Z) - A-Muze-Net: Music Generation by Composing the Harmony based on the
Generated Melody [91.22679787578438]
ピアノ音楽のMidiファイルを生成する方法を提案する。
この方法は、左手を右手に固定した2つのネットワークを用いて、左右の手をモデル化する。
ミディは音階に不変な方法で表現され、メロディはハーモニーを調和させる目的で表現される。
論文 参考訳(メタデータ) (2021-11-25T09:45:53Z) - Controllable deep melody generation via hierarchical music structure
representation [14.891975420982511]
MusicFrameworksは階層的な音楽構造表現であり、フル長のメロディを作成するための多段階の生成プロセスである。
各フレーズでメロディを生成するために、2つの異なるトランスフォーマーベースネットワークを用いてリズムとベーシックメロディを生成する。
さまざまな曲をカスタマイズしたり追加したりするために、音楽フレームワークのコード、基本的なメロディ、リズム構造を変更して、それに応じてネットワークがメロディを生成する。
論文 参考訳(メタデータ) (2021-09-02T01:31:14Z) - Differential Music: Automated Music Generation Using LSTM Networks with
Representation Based on Melodic and Harmonic Intervals [0.0]
本稿では,LSTMネットワークを用いた自動作曲のための生成AIモデルを提案する。
絶対的なピッチではなく音楽の動きに基づく音楽情報の符号化に新しいアプローチをとる。
実験結果は、音楽やトーンを聴くと約束を示す。
論文 参考訳(メタデータ) (2021-08-23T23:51:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。