DocumentCLIP: Linking Figures and Main Body Text in Reflowed Documents
- URL: http://arxiv.org/abs/2306.06306v3
- Date: Fri, 26 Apr 2024 01:14:22 GMT
- Title: DocumentCLIP: Linking Figures and Main Body Text in Reflowed Documents
- Authors: Fuxiao Liu, Hao Tan, Chris Tensmeyer,
- Abstract summary: We propose DocumentCLIP to enforce vision-language pretraining models to comprehend the interaction between images and longer text within documents.
Our model is beneficial for the real-world multimodal document understanding like news article, magazines, product descriptions, which contain linguistically and visually richer content.
- Score: 18.080447065002392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-language pretraining models have achieved great success in supporting multimedia applications by understanding the alignments between images and text. While existing vision-language pretraining models primarily focus on understanding single image associated with a single piece of text, they often ignore the alignment at the intra-document level, consisting of multiple sentences with multiple images. In this work, we propose DocumentCLIP, a salience-aware contrastive learning framework to enforce vision-language pretraining models to comprehend the interaction between images and longer text within documents. Our model is beneficial for the real-world multimodal document understanding like news article, magazines, product descriptions, which contain linguistically and visually richer content. To the best of our knowledge, we are the first to explore multimodal intra-document links by contrastive learning. In addition, we collect a large Wikipedia dataset for pretraining, which provides various topics and structures. Experiments show DocumentCLIP not only outperforms the state-of-the-art baselines in the supervised setting, but also achieves the best zero-shot performance in the wild after human evaluation. Our code is available at https://github.com/FuxiaoLiu/DocumentCLIP.
Related papers
- mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
We propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens.
DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%.
Compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens.
arXiv Detail & Related papers (2024-09-05T11:09:00Z) - LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding [0.0]
This paper proposes LayoutLLM, a more flexible document analysis method for understanding imaged documents.
Existing methods have been developed to enhance document comprehension by incorporating pre-training awareness of images, text, and layout structure.
Our experiments demonstrate improvement over the baseline model in various document analysis tasks.
arXiv Detail & Related papers (2024-03-21T09:25:24Z) - Hierarchical Multimodal Pre-training for Visually Rich Webpage
Understanding [22.00873805952277]
WebLM is a multimodal pre-training network designed to address the limitations of solely modeling text and structure modalities of HTML in webpages.
We propose several pre-training tasks to model the interaction among text, structure, and image modalities effectively.
Empirical results demonstrate that the pre-trained WebLM significantly surpasses previous state-of-the-art pre-trained models across several webpage understanding tasks.
arXiv Detail & Related papers (2024-02-28T11:50:36Z) - COSA: Concatenated Sample Pretrained Vision-Language Foundation Model [78.32081709802873]
Most vision-language foundation models employ image-text datasets for pretraining.
We propose COSA, a COncatenated SAmple pretrained vision-language foundation model.
We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining.
This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus.
arXiv Detail & Related papers (2023-06-15T12:29:42Z) - Linking Representations with Multimodal Contrastive Learning [1.6874375111244329]
In historical record linkage applications, documents are typically noisily transcribed by optical character recognition (OCR)
To leverage multimodal learning, this study develops CLIPPINGS (Contrastively LInking Pooled Pre-trained Embeddings)
arXiv Detail & Related papers (2023-04-07T03:39:08Z) - I2DFormer: Learning Image to Document Attention for Zero-Shot Image
Classification [123.90912800376039]
Online textual documents, e.g., Wikipedia, contain rich visual descriptions about object classes.
We propose I2DFormer, a novel transformer-based ZSL framework that jointly learns to encode images and documents.
Our method leads to highly interpretable results where document words can be grounded in the image regions.
arXiv Detail & Related papers (2022-09-21T12:18:31Z) - LayoutLMv3: Pre-training for Document AI with Unified Text and Image
Masking [83.09001231165985]
We propose LayoutLMv3 to pre-train multimodal Transformers for Document AI with unified text and image masking.
The simple unified architecture and training objectives make LayoutLMv3 a general-purpose pre-trained model for both text-centric and image-centric Document AI tasks.
arXiv Detail & Related papers (2022-04-18T16:19:52Z) - SelfDoc: Self-Supervised Document Representation Learning [46.22910270334824]
SelfDoc is a task-agnostic pre-training framework for document image understanding.
Our framework exploits the positional, textual, and visual information of every semantically meaningful component in a document.
It achieves superior performance on multiple downstream tasks with significantly fewer document images used in the pre-training stage compared to previous works.
arXiv Detail & Related papers (2021-06-07T04:19:49Z) - LayoutLM: Pre-training of Text and Layout for Document Image
Understanding [108.12766816023783]
We propose the textbfLM to jointly model interactions between text and layout information across scanned document images.
This is the first time that text and layout are jointly learned in a single framework for document-level pre-training.
It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42)
arXiv Detail & Related papers (2019-12-31T14:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.