Hierarchical Multimodal Pre-training for Visually Rich Webpage
Understanding
- URL: http://arxiv.org/abs/2402.18262v1
- Date: Wed, 28 Feb 2024 11:50:36 GMT
- Title: Hierarchical Multimodal Pre-training for Visually Rich Webpage
Understanding
- Authors: Hongshen Xu, Lu Chen, Zihan Zhao, Da Ma, Ruisheng Cao, Zichen Zhu and
Kai Yu
- Abstract summary: WebLM is a multimodal pre-training network designed to address the limitations of solely modeling text and structure modalities of HTML in webpages.
We propose several pre-training tasks to model the interaction among text, structure, and image modalities effectively.
Empirical results demonstrate that the pre-trained WebLM significantly surpasses previous state-of-the-art pre-trained models across several webpage understanding tasks.
- Score: 22.00873805952277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing prevalence of visually rich documents, such as webpages and
scanned/digital-born documents (images, PDFs, etc.), has led to increased
interest in automatic document understanding and information extraction across
academia and industry. Although various document modalities, including image,
text, layout, and structure, facilitate human information retrieval, the
interconnected nature of these modalities presents challenges for neural
networks. In this paper, we introduce WebLM, a multimodal pre-training network
designed to address the limitations of solely modeling text and structure
modalities of HTML in webpages. Instead of processing document images as
unified natural images, WebLM integrates the hierarchical structure of document
images to enhance the understanding of markup-language-based documents.
Additionally, we propose several pre-training tasks to model the interaction
among text, structure, and image modalities effectively. Empirical results
demonstrate that the pre-trained WebLM significantly surpasses previous
state-of-the-art pre-trained models across several webpage understanding tasks.
The pre-trained models and code are available at
https://github.com/X-LANCE/weblm.
Related papers
- mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
We propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens.
DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%.
Compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens.
arXiv Detail & Related papers (2024-09-05T11:09:00Z) - LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding [0.0]
This paper proposes LayoutLLM, a more flexible document analysis method for understanding imaged documents.
Existing methods have been developed to enhance document comprehension by incorporating pre-training awareness of images, text, and layout structure.
Our experiments demonstrate improvement over the baseline model in various document analysis tasks.
arXiv Detail & Related papers (2024-03-21T09:25:24Z) - mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding [100.17063271791528]
We propose the Unified Structure Learning to boost the performance of MLLMs.
Our model DocOwl 1.5 achieves state-of-the-art performance on 10 visual document understanding benchmarks.
arXiv Detail & Related papers (2024-03-19T16:48:40Z) - DocumentCLIP: Linking Figures and Main Body Text in Reflowed Documents [18.080447065002392]
We propose DocumentCLIP to enforce vision-language pretraining models to comprehend the interaction between images and longer text within documents.
Our model is beneficial for the real-world multimodal document understanding like news article, magazines, product descriptions, which contain linguistically and visually richer content.
arXiv Detail & Related papers (2023-06-09T23:51:11Z) - Unifying Vision, Text, and Layout for Universal Document Processing [105.36490575974028]
We propose a Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation.
Our method sets the state-of-the-art on 9 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites.
arXiv Detail & Related papers (2022-12-05T22:14:49Z) - Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
Understanding [58.70423899829642]
We present Pix2Struct, a pretrained image-to-text model for purely visual language understanding.
We show that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains.
arXiv Detail & Related papers (2022-10-07T06:42:06Z) - LayoutLMv3: Pre-training for Document AI with Unified Text and Image
Masking [83.09001231165985]
We propose LayoutLMv3 to pre-train multimodal Transformers for Document AI with unified text and image masking.
The simple unified architecture and training objectives make LayoutLMv3 a general-purpose pre-trained model for both text-centric and image-centric Document AI tasks.
arXiv Detail & Related papers (2022-04-18T16:19:52Z) - SelfDoc: Self-Supervised Document Representation Learning [46.22910270334824]
SelfDoc is a task-agnostic pre-training framework for document image understanding.
Our framework exploits the positional, textual, and visual information of every semantically meaningful component in a document.
It achieves superior performance on multiple downstream tasks with significantly fewer document images used in the pre-training stage compared to previous works.
arXiv Detail & Related papers (2021-06-07T04:19:49Z) - DOC2PPT: Automatic Presentation Slides Generation from Scientific
Documents [76.19748112897177]
We present a novel task and approach for document-to-slide generation.
We propose a hierarchical sequence-to-sequence approach to tackle our task in an end-to-end manner.
Our approach exploits the inherent structures within documents and slides and incorporates paraphrasing and layout prediction modules to generate slides.
arXiv Detail & Related papers (2021-01-28T03:21:17Z) - Towards a Multi-modal, Multi-task Learning based Pre-training Framework
for Document Representation Learning [5.109216329453963]
We introduce Document Topic Modelling and Document Shuffle Prediction as novel pre-training tasks.
We utilize the Longformer network architecture as the backbone to encode the multi-modal information from multi-page documents in an end-to-end fashion.
arXiv Detail & Related papers (2020-09-30T05:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.