ECGBERT: Understanding Hidden Language of ECGs with Self-Supervised
Representation Learning
- URL: http://arxiv.org/abs/2306.06340v1
- Date: Sat, 10 Jun 2023 04:23:08 GMT
- Title: ECGBERT: Understanding Hidden Language of ECGs with Self-Supervised
Representation Learning
- Authors: Seokmin Choi, Sajad Mousavi, Phillip Si, Haben G. Yhdego, Fatemeh
Khadem, Fatemeh Afghah
- Abstract summary: ECGBERT is a self-supervised representation learning approach that unlocks the underlying language of ECGs.
We demonstrate ECGBERT's potential to achieve state-of-the-art results on a wide variety of tasks.
- Score: 6.0106590095197605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the medical field, current ECG signal analysis approaches rely on
supervised deep neural networks trained for specific tasks that require
substantial amounts of labeled data. However, our paper introduces ECGBERT, a
self-supervised representation learning approach that unlocks the underlying
language of ECGs. By unsupervised pre-training of the model, we mitigate
challenges posed by the lack of well-labeled and curated medical data. ECGBERT,
inspired by advances in the area of natural language processing and large
language models, can be fine-tuned with minimal additional layers for various
ECG-based problems. Through four tasks, including Atrial Fibrillation
arrhythmia detection, heartbeat classification, sleep apnea detection, and user
authentication, we demonstrate ECGBERT's potential to achieve state-of-the-art
results on a wide variety of tasks.
Related papers
- Teach Multimodal LLMs to Comprehend Electrocardiographic Images [10.577263066644194]
We introduce ECGInstruct, a comprehensive ECG image instruction tuning dataset of over one million samples.
We also develop PULSE, an MLLM tailored for ECG image comprehension.
Our experiments show that PULSE sets a new state-of-the-art, outperforming general MLLMs with an average accuracy improvement of 15% to 30%.
arXiv Detail & Related papers (2024-10-21T20:26:41Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
This study introduces a new multimodal contrastive pretaining framework that aims to improve the quality and robustness of learned representations of 12-lead ECG signals.
Our framework comprises two key components, including Cardio Query Assistant (CQA) and ECG Semantics Integrator(ESI)
arXiv Detail & Related papers (2024-05-26T06:45:39Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - Interpretable ECG classification via a query-based latent space
traversal (qLST) [0.0]
We present a novel interpretability technique called qLST, which is able to provide explanations for any ECG classification model.
With qLST, we train a neural network that learns to traverse in the latent space of a variational autoencoder trained on a large university hospital dataset.
arXiv Detail & Related papers (2021-11-14T16:49:26Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.