ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning
- URL: http://arxiv.org/abs/2304.04646v2
- Date: Sun, 22 Oct 2023 03:18:48 GMT
- Title: ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning
- Authors: Hongxiang Gao, Xingyao Wang, Zhenghua Chen, Min Wu, Jianqing Li and
Chengyu Liu
- Abstract summary: Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
- Score: 20.465733855762835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiogram (ECG) monitoring is one of the most powerful technique of
cardiovascular disease (CVD) early identification, and the introduction of
intelligent wearable ECG devices has enabled daily monitoring. However, due to
the need for professional expertise in the ECGs interpretation, general public
access has once again been restricted, prompting the need for the development
of advanced diagnostic algorithms. Classic rule-based algorithms are now
completely outperformed by deep learning based methods. But the advancement of
smart diagnostic algorithms is hampered by issues like small dataset,
inconsistent data labeling, inefficient use of local and global ECG
information, memory and inference time consuming deployment of multiple models,
and lack of information transfer between tasks. We propose a multi-resolution
model that can sustain high-resolution low-level semantic information
throughout, with the help of the development of low-resolution high-level
semantic information, by capitalizing on both local morphological information
and global rhythm information. From the perspective of effective data leverage
and inter-task knowledge transfer, we develop a parameter isolation based ECG
continual learning (ECG-CL) approach. We evaluated our model's performance on
four open-access datasets by designing segmentation-to-classification for
cross-domain incremental learning, minority-to-majority class for category
incremental learning, and small-to-large sample for task incremental learning.
Our approach is shown to successfully extract informative morphological and
rhythmic features from ECG segmentation, leading to higher quality
classification results. From the perspective of intelligent wearable
applications, the possibility of a comprehensive ECG interpretation algorithm
based on single-lead ECGs is also confirmed.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
This study introduces a new multimodal contrastive pretaining framework that aims to improve the quality and robustness of learned representations of 12-lead ECG signals.
Our framework comprises two key components, including Cardio Query Assistant (CQA) and ECG Semantics Integrator(ESI)
arXiv Detail & Related papers (2024-05-26T06:45:39Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Unsupervised Pre-Training Using Masked Autoencoders for ECG Analysis [4.3312979375047025]
This paper proposes an unsupervised pre-training technique based on masked autoencoder (MAE) for electrocardiogram (ECG) signals.
In addition, we propose a task-specific fine-tuning to form a complete framework for ECG analysis.
The framework is high-level, universal, and not individually adapted to specific model architectures or tasks.
arXiv Detail & Related papers (2023-10-17T11:19:51Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.