Learning a Neuron by a Shallow ReLU Network: Dynamics and Implicit Bias
for Correlated Inputs
- URL: http://arxiv.org/abs/2306.06479v2
- Date: Mon, 2 Oct 2023 00:15:31 GMT
- Title: Learning a Neuron by a Shallow ReLU Network: Dynamics and Implicit Bias
for Correlated Inputs
- Authors: Dmitry Chistikov, Matthias Englert, Ranko Lazic
- Abstract summary: We prove that, for the fundamental regression task of learning a single neuron, training a one-hidden layer ReLU network converges to zero loss.
We also show and characterise a surprising distinction in this setting between interpolator networks of minimal rank and those of minimal Euclidean norm.
- Score: 5.7166378791349315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove that, for the fundamental regression task of learning a single
neuron, training a one-hidden layer ReLU network of any width by gradient flow
from a small initialisation converges to zero loss and is implicitly biased to
minimise the rank of network parameters. By assuming that the training points
are correlated with the teacher neuron, we complement previous work that
considered orthogonal datasets. Our results are based on a detailed
non-asymptotic analysis of the dynamics of each hidden neuron throughout the
training. We also show and characterise a surprising distinction in this
setting between interpolator networks of minimal rank and those of minimal
Euclidean norm. Finally we perform a range of numerical experiments, which
corroborate our theoretical findings.
Related papers
- Topological obstruction to the training of shallow ReLU neural networks [0.0]
We study the interplay between the geometry of the loss landscape and the optimization trajectories of simple neural networks.
This paper reveals the presence of topological obstruction in the loss landscape of shallow ReLU neural networks trained using gradient flow.
arXiv Detail & Related papers (2024-10-18T19:17:48Z) - Decorrelating neurons using persistence [29.25969187808722]
We present two regularisation terms computed from the weights of a minimum spanning tree of a clique.
We demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms.
We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms.
arXiv Detail & Related papers (2023-08-09T11:09:14Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Early Stage Convergence and Global Convergence of Training Mildly
Parameterized Neural Networks [3.148524502470734]
We show that the loss is decreased by a significant amount in the early stage of the training, and this decrease is fast.
We use a microscopic analysis of the activation patterns for the neurons, which helps us derive more powerful lower bounds for the gradient.
arXiv Detail & Related papers (2022-06-05T09:56:50Z) - On the Convergence of Shallow Neural Network Training with Randomly
Masked Neurons [11.119895959906085]
Given a dense shallow neural network, we focus on creating, training, and combining randomly selected functions.
By analyzing $i)$ theworks' neural kernel, $ii)$ the surrogate functions' gradient, and $iii)$ how we sample and combine the surrogate functions, we prove linear convergence rate of the training error.
For fixed neuron selection probability, the error term decreases as we increase the number of surrogate models, and increases as we increase the number of local training steps.
arXiv Detail & Related papers (2021-12-05T19:51:14Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
We study the last hidden layer representations of various state-of-the-art convolutional neural networks.
We find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information, and differ from each other only by statistically independent noise.
arXiv Detail & Related papers (2021-06-07T10:18:54Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Over-parametrized neural networks as under-determined linear systems [31.69089186688224]
We show that it is unsurprising simple neural networks can achieve zero training loss.
We show that kernels typically associated with the ReLU activation function have fundamental flaws.
We propose new activation functions that avoid the pitfalls of ReLU in that they admit zero training loss solutions for any set of distinct data points.
arXiv Detail & Related papers (2020-10-29T21:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.