Probabilistic Multi-Dimensional Classification
- URL: http://arxiv.org/abs/2306.06517v2
- Date: Sat, 25 Nov 2023 09:46:40 GMT
- Title: Probabilistic Multi-Dimensional Classification
- Authors: Vu-Linh Nguyen, Yang Yang and Cassio de Campos
- Abstract summary: Multi-dimensional classification (MDC) can be employed in a range of applications where one needs to predict multiple class variables for each given instance.
Many existing MDC methods suffer from at least one of inaccuracy, scalability, limited use to certain types of data.
This paper is an attempt to address all these disadvantages simultaneously.
- Score: 5.147849907358484
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-dimensional classification (MDC) can be employed in a range of
applications where one needs to predict multiple class variables for each given
instance. Many existing MDC methods suffer from at least one of inaccuracy,
scalability, limited use to certain types of data, hardness of interpretation
or lack of probabilistic (uncertainty) estimations. This paper is an attempt to
address all these disadvantages simultaneously. We propose a formal framework
for probabilistic MDC in which learning an optimal multi-dimensional classifier
can be decomposed, without loss of generality, into learning a set of (smaller)
single-variable multi-class probabilistic classifiers and a directed acyclic
graph. Current and future developments of both probabilistic classification and
graphical model learning can directly enhance our framework, which is flexible
and provably optimal. A collection of experiments is conducted to highlight the
usefulness of this MDC framework.
Related papers
- MISS: Multiclass Interpretable Scoring Systems [13.902264070785986]
We present a machine-learning approach for constructing Multiclass Interpretable Scoring Systems (MISS)
MISS is a fully data-driven methodology for single, sparse, and user-friendly scoring systems for multiclass classification problems.
Results indicate that our approach is competitive with other machine learning models in terms of classification performance metrics and provides well-calibrated class probabilities.
arXiv Detail & Related papers (2024-01-10T10:57:12Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Self-Learning Symmetric Multi-view Probabilistic Clustering [35.96327818838784]
Multi-view Clustering (MVC) has achieved significant progress, with many efforts dedicated to learn knowledge from multiple views.
Most existing methods are either not applicable or require additional steps for incomplete MVC.
We propose a novel unified framework for incomplete and complete MVC named self-learning symmetric multi-view probabilistic clustering.
arXiv Detail & Related papers (2023-05-12T08:27:03Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - Supervised Multivariate Learning with Simultaneous Feature Auto-grouping
and Dimension Reduction [7.093830786026851]
This paper proposes a novel clustered reduced-rank learning framework.
It imposes two joint matrix regularizations to automatically group the features in constructing predictive factors.
It is more interpretable than low-rank modeling and relaxes the stringent sparsity assumption in variable selection.
arXiv Detail & Related papers (2021-12-17T20:11:20Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Implicit MLE: Backpropagating Through Discrete Exponential Family
Distributions [24.389388509299543]
Implicit Maximum Likelihood Estimation is a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components.
We show that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.
arXiv Detail & Related papers (2021-06-03T12:42:21Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - pRSL: Interpretable Multi-label Stacking by Learning Probabilistic Rules [0.0]
We present the probabilistic rule stacking (pRSL) which uses probabilistic propositional logic rules and belief propagation to combine the predictions of several underlying classifiers.
We derive algorithms for exact and approximate inference and learning, and show that pRSL reaches state-of-the-art performance on various benchmark datasets.
arXiv Detail & Related papers (2021-05-28T14:06:21Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.