Straggler-Resilient Decentralized Learning via Adaptive Asynchronous Updates
- URL: http://arxiv.org/abs/2306.06559v2
- Date: Tue, 9 Jul 2024 01:23:59 GMT
- Title: Straggler-Resilient Decentralized Learning via Adaptive Asynchronous Updates
- Authors: Guojun Xiong, Gang Yan, Shiqiang Wang, Jian Li,
- Abstract summary: fully decentralized optimization methods have been advocated as alternatives to the popular parameter server framework.
We propose a fully decentralized algorithm with adaptive asynchronous updates via adaptively determining the number of neighbor workers for each worker to communicate with.
We show that DSGD-AAU achieves a linear speedup for convergence and demonstrate its effectiveness via extensive experiments.
- Score: 28.813671194939225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing demand for large-scale training of machine learning models, fully decentralized optimization methods have recently been advocated as alternatives to the popular parameter server framework. In this paradigm, each worker maintains a local estimate of the optimal parameter vector, and iteratively updates it by waiting and averaging all estimates obtained from its neighbors, and then corrects it on the basis of its local dataset. However, the synchronization phase is sensitive to stragglers. An efficient way to mitigate this effect is to consider asynchronous updates, where each worker computes stochastic gradients and communicates with other workers at its own pace. Unfortunately, fully asynchronous updates suffer from staleness of stragglers' parameters. To address these limitations, we propose a fully decentralized algorithm DSGD-AAU with adaptive asynchronous updates via adaptively determining the number of neighbor workers for each worker to communicate with. We show that DSGD-AAU achieves a linear speedup for convergence and demonstrate its effectiveness via extensive experiments.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients")
Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift")
We propose and analyze Asynchronous Exact Averaging (AREA), a new (sub)gradient algorithm that utilizes communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies.
arXiv Detail & Related papers (2024-05-16T14:22:49Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Asynchronous Local-SGD Training for Language Modeling [37.02427878640653]
Local gradient descent (Local-SGD) is an approach to distributed optimization where each device performs more than one SGD update per communication.
This work presents an empirical study of it asynchronous Local-SGD for training language models; that is, each worker updates the global parameters as soon as it has finished its SGD steps.
arXiv Detail & Related papers (2024-01-17T11:17:04Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - STSyn: Speeding Up Local SGD with Straggler-Tolerant Synchronization [14.526055067546507]
Local synchronization suffers from some workers being idle random delays due to slow and straggler workers, as it waits for the workers to complete the same amount of local updates.
In this paper, to mitigate stragglers and improve communication efficiency, a novel local SGD system strategy, named STSyn, is developed.
arXiv Detail & Related papers (2022-10-06T08:04:20Z) - AsyncFedED: Asynchronous Federated Learning with Euclidean Distance
based Adaptive Weight Aggregation [17.57059932879715]
In an asynchronous learning framework, a server updates the global model once it receives an update from a client instead of waiting for all the updates to arrive as in the setting.
A proposed adaptive weight aggregation algorithm, referred to as AsyncFedED, is presented.
arXiv Detail & Related papers (2022-05-27T07:18:11Z) - Straggler-Resilient Distributed Machine Learning with Dynamic Backup
Workers [9.919012793724628]
We propose a fully distributed algorithm to determine the number of backup workers for each worker.
Our algorithm achieves a linear speedup for convergence (i.e., convergence performance increases linearly with respect to the number of workers)
arXiv Detail & Related papers (2021-02-11T21:39:53Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - An Efficient Asynchronous Method for Integrating Evolutionary and
Gradient-based Policy Search [76.73477450555046]
We introduce an Asynchronous Evolution Strategy-Reinforcement Learning (AES-RL) that maximizes the parallel efficiency of ES and integrates it with policy gradient methods.
Specifically, we propose 1) a novel framework to merge ES and DRL asynchronously and 2) various asynchronous update methods that can take all advantages of asynchronism, ES, and DRL.
arXiv Detail & Related papers (2020-12-10T02:30:48Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
Machine learning algorithms are deployed at the network edge for training artificial intelligence (AI) models.
This paper focuses on the novel joint design of parameter (computation load) allocation and bandwidth allocation.
arXiv Detail & Related papers (2020-03-10T05:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.