Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
- URL: http://arxiv.org/abs/2405.10123v2
- Date: Tue, 28 May 2024 18:27:41 GMT
- Title: Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
- Authors: Charikleia Iakovidou, Kibaek Kim,
- Abstract summary: Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients")
Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift")
We propose and analyze Asynchronous Exact Averaging (AREA), a new (sub)gradient algorithm that utilizes communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients") under the coordination of a central server. Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift"). In this work, we propose and analyze Asynchronous Exact Averaging (AREA), a new stochastic (sub)gradient algorithm that utilizes asynchronous communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies. Moreover, AREA is, to the best of our knowledge, the first method that is guaranteed to converge under arbitrarily long delays, without the use of delay-adaptive stepsizes, and (i) for strongly convex, smooth functions, asymptotically converges to an error neighborhood whose size depends only on the variance of the stochastic gradients used with respect to the number of iterations, and (ii) for convex, non-smooth functions, matches the convergence rate of the centralized stochastic subgradient method up to a constant factor, which depends on the average of the individual client update frequencies instead of their minimum (or maximum). Our numerical results validate our theoretical analysis and indicate AREA outperforms state-of-the-art methods when local data are highly non-iid, especially as the number of clients grows.
Related papers
- Optimizing Asynchronous Federated Learning: A Delicate Trade-Off Between Model-Parameter Staleness and Update Frequency [0.9999629695552195]
We use gradient modeling to better understand the impact of design choices in asynchronous FL algorithms.
We characterize in particular a fundamental trade-off for optimizing asynchronous FL.
We show that these optimizations enhance accuracy by 10% to 30%.
arXiv Detail & Related papers (2025-02-12T08:38:13Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Asynchronous Federated Learning: A Scalable Approach for Decentralized Machine Learning [0.9208007322096533]
Federated Learning (FL) has emerged as a powerful paradigm for decentralized machine learning, enabling collaborative model training across diverse clients without sharing raw data.
Traditional FL approaches often face limitations in scalability and efficiency due to their reliance on synchronous client updates.
We propose an Asynchronous Federated Learning (AFL) algorithm, which allows clients to update the global model independently and asynchronously.
arXiv Detail & Related papers (2024-12-23T17:11:02Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
Federated learning (FL) aims to learn a common global model without exchanging or transferring the data that are stored locally at different clients.
In this paper, we propose an efficient federated learning (AFL) framework called DeFedAvg.
DeFedAvg is the first AFL algorithm that achieves the desirable linear speedup property, which indicates its high scalability.
arXiv Detail & Related papers (2024-02-17T05:22:46Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Federated Minimax Optimization with Client Heterogeneity [11.558008138030845]
Minimax computation has seen a surge in interest with the advent modern applications such as GANs.
We propose a general federated minimax framework that subsumes settings and existing methods like Local SGDA.
arXiv Detail & Related papers (2023-02-08T18:33:55Z) - AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias
Estimation [12.62716075696359]
In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data.
In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently.
We propose an adaptive algorithm that accurately estimates drift across clients.
arXiv Detail & Related papers (2022-04-27T20:04:24Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMO is the first (first-order) FLtexttFedGLOMO algorithm.
Our algorithm is provably optimal even with communication between the clients and the server.
arXiv Detail & Related papers (2020-12-07T21:05:31Z) - Tackling the Objective Inconsistency Problem in Heterogeneous Federated
Optimization [93.78811018928583]
This paper provides a framework to analyze the convergence of federated heterogeneous optimization algorithms.
We propose FedNova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
arXiv Detail & Related papers (2020-07-15T05:01:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.