論文の概要: Learnable Digital Twin for Efficient Wireless Network Evaluation
- arxiv url: http://arxiv.org/abs/2306.06574v1
- Date: Sun, 11 Jun 2023 03:43:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 18:05:50.891043
- Title: Learnable Digital Twin for Efficient Wireless Network Evaluation
- Title(参考訳): 無線ネットワーク評価のための学習可能なディジタルツイン
- Authors: Boning Li, Timofey Efimov, Abhishek Kumar, Jose Cortes, Gunjan Verma,
Ananthram Swami, Santiago Segarra
- Abstract要約: ネットワークデジタルツインツ(NDT)は、ネットワークを物理的に実装する前にキーパフォーマンスインジケータ(KPI)の推定を容易にする。
本稿では,ネットワークシミュレータのための学習型NDTを提案する。
- 参考スコア(独自算出の注目度): 40.829275623191656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network digital twins (NDTs) facilitate the estimation of key performance
indicators (KPIs) before physically implementing a network, thereby enabling
efficient optimization of the network configuration. In this paper, we propose
a learning-based NDT for network simulators. The proposed method offers a
holistic representation of information flow in a wireless network by
integrating node, edge, and path embeddings. Through this approach, the model
is trained to map the network configuration to KPIs in a single forward pass.
Hence, it offers a more efficient alternative to traditional simulation-based
methods, thus allowing for rapid experimentation and optimization. Our proposed
method has been extensively tested through comprehensive experimentation in
various scenarios, including wired and wireless networks. Results show that it
outperforms baseline learning models in terms of accuracy and robustness.
Moreover, our approach achieves comparable performance to simulators but with
significantly higher computational efficiency.
- Abstract(参考訳): ネットワークディジタルツインツ(NDT)は、ネットワークを物理的に実装する前にキーパフォーマンスインジケータ(KPI)を推定し、ネットワーク構成の効率的な最適化を可能にする。
本稿では,ネットワークシミュレータのための学習型NDTを提案する。
提案手法は,ノード,エッジ,パス埋め込みを統合することで,無線ネットワークにおける情報フローを総括的に表現する。
このアプローチを通じて、モデルはトレーニングされ、ネットワーク構成を単一のフォワードパスでKPIにマップする。
したがって、従来のシミュレーションベースの方法よりも効率的な代替手段を提供し、迅速な実験と最適化を可能にする。
提案手法は,有線ネットワークや無線ネットワークなど,様々なシナリオにおける包括的実験を通じて広範囲に検証されている。
その結果,ベースライン学習モデルよりも精度と堅牢性が高いことがわかった。
さらに,本手法はシミュレータに匹敵する性能を実現するが,計算効率は著しく向上する。
関連論文リスト
- Rapid Network Adaptation: Learning to Adapt Neural Networks Using
Test-Time Feedback [12.946419909506883]
テスト時間フィードバック信号を用いてネットワークをオンザフライで適応するクローズドループシステムを構築した。
本稿では,このループを学習型関数を用いて効果的に実装し,ネットワークに対する償却を実現する方法を提案する。
これにより、Rapid Network Adaptation (RNA) と呼ばれる適応手法が実現され、ベースラインよりも柔軟で桁違いに高速になる。
論文 参考訳(メタデータ) (2023-09-27T16:20:39Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Rewarded meta-pruning: Meta Learning with Rewards for Channel Pruning [19.978542231976636]
本稿では,ディープラーニングモデルにおける計算効率向上のためのパラメータとFLOPの削減手法を提案する。
本稿では,ネットワークの精度と計算効率のトレードオフを制御するために,精度と効率係数を導入する。
論文 参考訳(メタデータ) (2023-01-26T12:32:01Z) - Human Activity Recognition from Wi-Fi CSI Data Using Principal
Component-Based Wavelet CNN [3.9533044769534444]
HAR(Human Activity Recognition)は、監視、セキュリティ、医療分野に応用された新興技術である。
実用リアルタイムアプリケーションにロバスト性と効率性を提供する新しいアプローチとして,主成分に基づくウェーブレット畳み込みニューラルネットワーク(PCWCNN)を提案する。
提案したPCWCNNモデルが,既存のアプローチよりも優れた実データセットで非常によく動作することを実証的に示す。
論文 参考訳(メタデータ) (2022-12-26T13:45:19Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
本研究は,チャネルサイズのマイクロサーチ空間を調べることにより,計算制約のある環境において効率的な手法を提案する。
チャネルサイズ最適化に際し、ネットワークの異なる接続層内の依存関係を抽出する自動アルゴリズムを設計する。
また、テスト精度と高い相関性を持ち、個々のネットワーク層を解析できる新しいメトリクスも導入する。
論文 参考訳(メタデータ) (2021-10-13T16:17:19Z) - Learning Robust Beamforming for MISO Downlink Systems [14.429561340880074]
基地局は、不完全なチャネル状態情報(CSI)とその特徴だけで効率的なマルチアンテナ伝送戦略を特定する。
深層ニューラルネットワーク(DNN)を実世界の伝播環境に合わせて最適化した堅牢なトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-02T09:56:35Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。