Zero-Shot Wireless Indoor Navigation through Physics-Informed
Reinforcement Learning
- URL: http://arxiv.org/abs/2306.06766v2
- Date: Fri, 15 Sep 2023 20:19:46 GMT
- Title: Zero-Shot Wireless Indoor Navigation through Physics-Informed
Reinforcement Learning
- Authors: Mingsheng Yin, Tao Li, Haozhe Lei, Yaqi Hu, Sundeep Rangan, and
Quanyan Zhu
- Abstract summary: This work proposes a novel physics-informed RL (PIRL) for indoor robot navigation using wireless signals.
After learning to utilize the physics information, the agent can transfer this knowledge across different tasks and navigate in an unknown environment without fine-tuning.
It is shown that the PIRL significantly outperforms both e2e RL and RL-based solutions in terms of generalization and performance.
- Score: 21.716538715570756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing focus on indoor robot navigation utilizing wireless signals has
stemmed from the capability of these signals to capture high-resolution angular
and temporal measurements. Prior heuristic-based methods, based on radio
frequency propagation, are intuitive and generalizable across simple scenarios,
yet fail to navigate in complex environments. On the other hand, end-to-end
(e2e) deep reinforcement learning (RL), powered by advanced computing
machinery, can explore the entire state space, delivering surprising
performance when facing complex wireless environments. However, the price to
pay is the astronomical amount of training samples, and the resulting policy,
without fine-tuning (zero-shot), is unable to navigate efficiently in new
scenarios unseen in the training phase. To equip the navigation agent with
sample-efficient learning and {zero-shot} generalization, this work proposes a
novel physics-informed RL (PIRL) where a distance-to-target-based cost
(standard in e2e) is augmented with physics-informed reward shaping. The key
intuition is that wireless environments vary, but physics laws persist. After
learning to utilize the physics information, the agent can transfer this
knowledge across different tasks and navigate in an unknown environment without
fine-tuning. The proposed PIRL is evaluated using a wireless digital twin (WDT)
built upon simulations of a large class of indoor environments from the AI
Habitat dataset augmented with electromagnetic (EM) radiation simulation for
wireless signals. It is shown that the PIRL significantly outperforms both e2e
RL and heuristic-based solutions in terms of generalization and performance.
Source code is available at \url{https://github.com/Panshark/PIRL-WIN}.
Related papers
- How to Bridge the Sim-to-Real Gap in Digital Twin-Aided Telecommunication Networks [30.858857240474077]
Training effective artificial intelligence models for telecommunications is challenging due to the scarcity of deployment-specific data.<n>Real data collection is expensive, and available datasets often fail to capture the unique operational conditions and contextual variability of the network environment.<n>Digital twinning provides a potential solution to this problem, as simulators tailored to the current network deployment can generate site-specific data to augment the available training datasets.
arXiv Detail & Related papers (2025-07-09T17:27:51Z) - Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
We present a novel hybrid method that integrates numerical simulation, neural physics, and generative control.<n>Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions.<n>We promise to release both models and data upon acceptance.
arXiv Detail & Related papers (2025-05-25T01:27:18Z) - World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
In this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network.<n>A world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling.<n>In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions.
arXiv Detail & Related papers (2025-05-03T06:23:18Z) - Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.
multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.
Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - Low-cost Real-world Implementation of the Swing-up Pendulum for Deep Reinforcement Learning Experiments [4.669957449088593]
We describe a low-cost physical inverted pendulum apparatus and software environment for exploring sim-to-real DRL methods.
In particular, the design of our apparatus enables detailed examination of the delays that arise in physical systems when sensing, communicating, learning, inferring and actuating.
Our design shows how commercial, off-the-shelf electronics and electromechanical and sensor systems, combined with common metal extrusions, dowel and 3D printed couplings provide a pathway for affordable physical DRL apparatus.
arXiv Detail & Related papers (2025-03-14T04:18:36Z) - DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users [52.9870460238443]
We propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array.
Our simulation results show that the proposed method can support data rates very close to the best possible values.
arXiv Detail & Related papers (2025-02-03T11:50:43Z) - Virtual Sensing-Enabled Digital Twin Framework for Real-Time Monitoring of Nuclear Systems Leveraging Deep Neural Operators [0.36651088217486427]
This paper introduces the use of Deep Operator Networks (DeepONet) as a core component of a digital twin framework.
DeepONet serves as a dynamic and scalable virtual sensor by accurately mapping the interplay between operational input parameters and spatially distributed system behaviors.
Our results show that DeepONet achieves accurate predictions with low mean squared error and relative L2 error and can make predictions on unknown data 1400 times faster than traditional CFD simulations.
arXiv Detail & Related papers (2024-10-17T16:56:04Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Reinforcement-learning robotic sailboats: simulator and preliminary
results [0.37918614538294315]
This work focuses on the main challenges and problems in developing a virtual oceanic environment reproducing real experiments using Unmanned Surface Vehicles (USV) digital twins.
We introduce the key features for building virtual worlds, considering using Reinforcement Learning (RL) agents for autonomous navigation and control.
arXiv Detail & Related papers (2024-01-16T09:04:05Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset
Generation [1.2165229201148093]
This paper presents a visual simulation framework able to generate realistic railway scenarios in a virtual environment.
It automatically produces inertial data and labeled datasets from emulated LiDARs and cameras.
arXiv Detail & Related papers (2023-02-28T11:00:13Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
We introduce a new differentiable physics benchmark called PasticineLab.
In each task, the agent uses manipulators to deform the plasticine into the desired configuration.
We evaluate several existing reinforcement learning (RL) methods and gradient-based methods on this benchmark.
arXiv Detail & Related papers (2021-04-07T17:59:23Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
We show that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity.
Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network.
arXiv Detail & Related papers (2020-01-02T19:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.