Kepler: Robust Learning for Faster Parametric Query Optimization
- URL: http://arxiv.org/abs/2306.06798v2
- Date: Wed, 18 Oct 2023 18:12:41 GMT
- Title: Kepler: Robust Learning for Faster Parametric Query Optimization
- Authors: Lyric Doshi, Vincent Zhuang, Gaurav Jain, Ryan Marcus, Haoyu Huang,
Deniz Altinb\"uken, Eugene Brevdo, Campbell Fraser
- Abstract summary: We propose an end-to-end learning-based approach to parametric query optimization.
Kepler achieves significant improvements in query runtime on multiple datasets.
- Score: 5.6119420695093245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most existing parametric query optimization (PQO) techniques rely on
traditional query optimizer cost models, which are often inaccurate and result
in suboptimal query performance. We propose Kepler, an end-to-end
learning-based approach to PQO that demonstrates significant speedups in query
latency over a traditional query optimizer. Central to our method is Row Count
Evolution (RCE), a novel plan generation algorithm based on perturbations in
the sub-plan cardinality space. While previous approaches require accurate cost
models, we bypass this requirement by evaluating candidate plans via actual
execution data and training an ML model to predict the fastest plan given
parameter binding values. Our models leverage recent advances in neural network
uncertainty in order to robustly predict faster plans while avoiding
regressions in query performance. Experimentally, we show that Kepler achieves
significant improvements in query runtime on multiple datasets on PostgreSQL.
Related papers
- GenJoin: Conditional Generative Plan-to-Plan Query Optimizer that Learns from Subplan Hints [1.3108652488669732]
We present GenJoin, a novel learned query that considers the query optimization problem as a symbiotic generative task.
GenJoin is the first learned query that significantly and consistently outperforms as well as state-of-the-art methods on two well-known real-world benchmarks.
arXiv Detail & Related papers (2024-11-07T08:31:01Z) - PRICE: A Pretrained Model for Cross-Database Cardinality Estimation [78.30959470441442]
Cardinality estimation (CardEst) is essential for optimizing query execution plans.
Recent ML-based CardEst methods achieve high accuracy but face deployment challenges due to high preparation costs.
We propose PRICE, a PRetrained multI-table CardEst model, which addresses these limitations.
arXiv Detail & Related papers (2024-06-03T06:21:53Z) - Roq: Robust Query Optimization Based on a Risk-aware Learned Cost Model [3.0784574277021406]
We propose a holistic framework that enables robust query optimization based on a risk-aware learning approach.
Roq includes a novel formalization of the notion of robustness in the context of query optimization.
We demonstrate experimentally that Roq provides significant improvements to robust query optimization compared to the state-of-the-art.
arXiv Detail & Related papers (2024-01-26T21:16:37Z) - JoinGym: An Efficient Query Optimization Environment for Reinforcement
Learning [58.71541261221863]
Join order selection (JOS) is the problem of ordering join operations to minimize total query execution cost.
We present JoinGym, a query optimization environment for bushy reinforcement learning (RL)
Under the hood, JoinGym simulates a query plan's cost by looking up intermediate result cardinalities from a pre-computed dataset.
arXiv Detail & Related papers (2023-07-21T17:00:06Z) - BitE : Accelerating Learned Query Optimization in a Mixed-Workload
Environment [0.36700088931938835]
BitE is a novel ensemble learning model using database statistics and metadata to tune a learned query for enhancing performance.
Our model achieves 19.6% more improved queries and 15.8% less regressed queries compared to the existing traditional methods.
arXiv Detail & Related papers (2023-06-01T16:05:33Z) - Lero: A Learning-to-Rank Query Optimizer [49.841082217997354]
We introduce a learning to rank query, called Lero, which builds on top of the native query and continuously learns to improve query optimization.
Rather than building a learned from scratch, Lero is designed to leverage decades of wisdom of databases and improve the native.
Lero achieves near optimal performance on several benchmarks.
arXiv Detail & Related papers (2023-02-14T07:31:11Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Robust Generalization and Safe Query-Specialization in Counterfactual
Learning to Rank [62.28965622396868]
We introduce the Generalization and generalization (GENSPEC) algorithm, a robust feature-based counterfactual Learning to Rank method.
Our results show that GENSPEC leads to optimal performance on queries with sufficient click data, while having robust behavior on queries with little or noisy data.
arXiv Detail & Related papers (2021-02-11T13:17:26Z) - Monotonic Cardinality Estimation of Similarity Selection: A Deep
Learning Approach [22.958342743597044]
We investigate the possibilities of utilizing deep learning for cardinality estimation of similarity selection.
We propose a novel and generic method that can be applied to any data type and distance function.
arXiv Detail & Related papers (2020-02-15T20:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.