BitE : Accelerating Learned Query Optimization in a Mixed-Workload
Environment
- URL: http://arxiv.org/abs/2306.00845v2
- Date: Fri, 2 Jun 2023 01:32:48 GMT
- Title: BitE : Accelerating Learned Query Optimization in a Mixed-Workload
Environment
- Authors: Yuri Kim, Yewon Choi, Yujung Gil, Sanghee Lee, Heesik Shin and Jaehyok
Chong
- Abstract summary: BitE is a novel ensemble learning model using database statistics and metadata to tune a learned query for enhancing performance.
Our model achieves 19.6% more improved queries and 15.8% less regressed queries compared to the existing traditional methods.
- Score: 0.36700088931938835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although the many efforts to apply deep reinforcement learning to query
optimization in recent years, there remains room for improvement as query
optimizers are complex entities that require hand-designed tuning of workloads
and datasets. Recent research present learned query optimizations results
mostly in bulks of single workloads which focus on picking up the unique traits
of the specific workload. This proves to be problematic in scenarios where the
different characteristics of multiple workloads and datasets are to be mixed
and learned together. Henceforth, in this paper, we propose BitE, a novel
ensemble learning model using database statistics and metadata to tune a
learned query optimizer for enhancing performance. On the way, we introduce
multiple revisions to solve several challenges: we extend the search space for
the optimal Abstract SQL Plan(represented as a JSON object called ASP) by
expanding hintsets, we steer the model away from the default plans that may be
biased by configuring the experience with all unique plans of queries, and we
deviate from the traditional loss functions and choose an alternative method to
cope with underestimation and overestimation of reward. Our model achieves
19.6% more improved queries and 15.8% less regressed queries compared to the
existing traditional methods whilst using a comparable level of resources.
Related papers
- Data Fusion of Synthetic Query Variants With Generative Large Language Models [1.864807003137943]
This work explores the feasibility of using synthetic query variants generated by instruction-tuned Large Language Models in data fusion experiments.
We introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques.
Our analysis shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods.
arXiv Detail & Related papers (2024-11-06T12:54:27Z) - The Unreasonable Effectiveness of LLMs for Query Optimization [4.50924404547119]
We show that embeddings of query text contain useful semantic information for query optimization.
We show that a simple binary deciding between alternative query plans, trained on a small number of embedded query vectors, can outperform existing systems.
arXiv Detail & Related papers (2024-11-05T07:10:00Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
We study the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations.
Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations.
We show that the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets.
arXiv Detail & Related papers (2024-09-21T18:39:53Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Roq: Robust Query Optimization Based on a Risk-aware Learned Cost Model [3.0784574277021406]
We propose a holistic framework that enables robust query optimization based on a risk-aware learning approach.
Roq includes a novel formalization of the notion of robustness in the context of query optimization.
We demonstrate experimentally that Roq provides significant improvements to robust query optimization compared to the state-of-the-art.
arXiv Detail & Related papers (2024-01-26T21:16:37Z) - JoinGym: An Efficient Query Optimization Environment for Reinforcement
Learning [58.71541261221863]
Join order selection (JOS) is the problem of ordering join operations to minimize total query execution cost.
We present JoinGym, a query optimization environment for bushy reinforcement learning (RL)
Under the hood, JoinGym simulates a query plan's cost by looking up intermediate result cardinalities from a pre-computed dataset.
arXiv Detail & Related papers (2023-07-21T17:00:06Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
This paper proposes a new formulation of the tuning problem, called consolidated learning.
In such settings, we are interested in the total optimization time rather than tuning for a single task.
We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database.
arXiv Detail & Related papers (2022-01-27T21:38:53Z) - Conditional Sequential Slate Optimization [15.10459152219771]
A search ranking system typically orders the results by independent query-document scores to produce a slate of search results.
We introduce conditional sequential slate optimization (CSSO), which jointly learns to optimize for traditional ranking metrics as well as prescribed distribution criteria of documents within the slate.
The proposed method can be applied to practical real world problems such as enforcing diversity in e-commerce search results, mitigating bias in top results and personalization of results.
arXiv Detail & Related papers (2021-08-12T09:14:46Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
We introduce Iterative Functional Aggregate Queries (IFAQ), a framework that realizes an alternative approach.
IFAQ treats the feature extraction query and the learning task as one program given in the IFAQ's domain-specific language.
We show that a Scala implementation of IFAQ can outperform mlpack, Scikit, and specialization by several orders of magnitude for linear regression and regression tree models over several relational datasets.
arXiv Detail & Related papers (2020-01-10T16:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.