論文の概要: Unlocking Feature Visualization for Deeper Networks with MAgnitude
Constrained Optimization
- arxiv url: http://arxiv.org/abs/2306.06805v1
- Date: Sun, 11 Jun 2023 23:33:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 16:25:54.591123
- Title: Unlocking Feature Visualization for Deeper Networks with MAgnitude
Constrained Optimization
- Title(参考訳): MAgnitude Constrained Optimization を用いた深部ネットワークのアンロック特徴可視化
- Authors: Thomas Fel, Thibaut Boissin, Victor Boutin, Agustin Picard, Paul
Novello, Julien Colin, Drew Linsley, Tom Rousseau, R\'emi Cad\`ene, Laurent
Gardes, Thomas Serre
- Abstract要約: 解釈可能な画像を生成するためのシンプルなアプローチであるMACOについて述べる。
我々のアプローチは、質的にも定量的にも、はるかに優れた結果をもたらし、大きな最先端のニューラルネットワークのための効率的かつ解釈可能な特徴視覚化を解き放つ。
特徴可視化手法の比較のための新しいベンチマークで本手法を検証し,画像Netデータセットの全クラスを対象とした可視化結果をリリースする。
- 参考スコア(独自算出の注目度): 7.851493864645337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature visualization has gained substantial popularity, particularly after
the influential work by Olah et al. in 2017, which established it as a crucial
tool for explainability. However, its widespread adoption has been limited due
to a reliance on tricks to generate interpretable images, and corresponding
challenges in scaling it to deeper neural networks. Here, we describe MACO, a
simple approach to address these shortcomings. The main idea is to generate
images by optimizing the phase spectrum while keeping the magnitude constant to
ensure that generated explanations lie in the space of natural images. Our
approach yields significantly better results (both qualitatively and
quantitatively) and unlocks efficient and interpretable feature visualizations
for large state-of-the-art neural networks. We also show that our approach
exhibits an attribution mechanism allowing us to augment feature visualizations
with spatial importance. We validate our method on a novel benchmark for
comparing feature visualization methods, and release its visualizations for all
classes of the ImageNet dataset on https://serre-lab.github.io/Lens/.
Overall, our approach unlocks, for the first time, feature visualizations for
large, state-of-the-art deep neural networks without resorting to any
parametric prior image model.
- Abstract(参考訳): 機能可視化は、特に2017年のolahらによる影響力のある研究によって、説明可能性の重要なツールとして確立された後、かなりの人気を集めている。
しかしながら、解釈可能なイメージを生成するためのトリックへの依存と、より深いニューラルネットワークにスケールアップする際の課題により、広く採用されているのは限られている。
ここではこれらの欠点に対処するための簡単なアプローチであるMACOについて述べる。
主な考え方は、生成した説明が自然画像の空間に存在することを保証するために、位相スペクトルを最適化して画像を生成することである。
我々のアプローチは(質的にも量的にも)かなり良い結果をもたらし、大規模な最先端ニューラルネットワークの効率的かつ解釈可能な特徴可視化を解き放ちます。
また,我々のアプローチでは,特徴の可視化を空間的重要度で強化できる帰属機構が示されている。
特徴可視化手法を比較するための新しいベンチマークで本手法を検証し、画像Netデータセットの全クラスについてhttps://serre-lab.github.io/Lens/で視覚化する。
全体として、我々のアプローチは、パラメトリックな事前画像モデルに頼ることなく、大規模な最先端のディープニューラルネットワークの可視化を初めて行う。
関連論文リスト
- AMSA-UNet: An Asymmetric Multiple Scales U-net Based on Self-attention for Deblurring [7.00986132499006]
asymmetric multiple scales U-net based on self-attention (AMSA-UNet) was proposed to improve the accuracy and compute complexity。
マルチスケールなU字型アーキテクチャを導入することで、ネットワークはグローバルレベルでぼやけた領域に集中でき、ローカルレベルで画像の詳細を回復することができる。
論文 参考訳(メタデータ) (2024-06-13T11:39:02Z) - Feature Accentuation: Revealing 'What' Features Respond to in Natural Images [4.4273123155989715]
本稿では,任意の入力画像のどの位置と何にあるかが特徴の応答を誘導するかを伝達できる,解釈可能性ツールキット「Feature accentuation」に新たな手法を導入する。
パラメータ化,拡張,正規化の特別な組み合わせは,シード画像とターゲット特徴を同時に類似した自然な視覚化をもたらす。
我々は,Lucentの拡張であるFaccentライブラリとして,機能アクセントの正確な実装をコミュニティに提供する。
論文 参考訳(メタデータ) (2024-02-15T16:01:59Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
画像から3Dまでを1つの視点から解く新しいニューラルレンダリング手法を提案する。
提案手法では, 符号付き距離関数を表面表現として使用し, 幾何エンコードボリュームとハイパーネットワークスによる一般化可能な事前処理を取り入れた。
本実験は,一貫した結果と高速な生成による提案手法の利点を示す。
論文 参考訳(メタデータ) (2023-12-24T08:42:37Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - A Comprehensive Survey on Deep Neural Image Deblurring [0.76146285961466]
画像の劣化は、ぼやけを引き起こす画像の劣化要素を排除し、画像の品質を改善して、テクスチャとオブジェクトの可視化を改善する。
伝統的に、画像の劣化で優先される事前ベース最適化アプローチは、ディープニューラルネットワークが最近この分野で大きなブレークスルーをもたらした。
私たちは、デブロアリングアプリケーションで使用される最も一般的なディープニューラルネットワーク構造を概説し、その強みと斬新さを説明し、パフォーマンスメトリクスを要約し、広く使われているデータセットを紹介します。
論文 参考訳(メタデータ) (2023-10-07T07:29:42Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
内視鏡画像の特性を詳細に解析し、画像とニューラルネットワークの互換性を改善する。
まず,完全な画像情報の代わりに部分的な画像情報を入力するMask Image Modelling (MIM) モジュールを導入する。
第2に、画像とニューラルネットワークの互換性を明確に向上させるために、内視鏡画像を強化する軽量ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T02:19:38Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
本研究では,スムースとディテールを段階的に分割・収束的に処理する,目的・解釈可能なディテール・ファイダリティ・アテンション・ネットワークを提案する。
特に,詳細推論において顕著な解釈可能な特徴表現のためのヘシアンフィルタを提案する。
実験により,提案手法は最先端手法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-09-28T08:31:23Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
分類に欠かせないと思われる特徴を視覚化することは有利である。
既存の可視化手法は,背景特徴と前景特徴の両方からなる高信頼画像を生成する。
本研究では,あるタスクにおいて最も重要であると考えられる識別的特徴を可視化するための,サリエンシ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-31T06:11:06Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。