Multi-Agent Reinforcement Learning Guided by Signal Temporal Logic
Specifications
- URL: http://arxiv.org/abs/2306.06808v2
- Date: Sun, 22 Oct 2023 20:37:40 GMT
- Title: Multi-Agent Reinforcement Learning Guided by Signal Temporal Logic
Specifications
- Authors: Jiangwei Wang, Shuo Yang, Ziyan An, Songyang Han, Zhili Zhang, Rahul
Mangharam, Meiyi Ma, Fei Miao
- Abstract summary: We propose a novel STL-guided multi-agent reinforcement learning framework.
The STL requirements are designed to include both task specifications according to the objective of each agent and safety specifications, and the values of the STL specifications are leveraged to generate rewards.
- Score: 22.407388715224283
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reward design is a key component of deep reinforcement learning, yet some
tasks and designer's objectives may be unnatural to define as a scalar cost
function. Among the various techniques, formal methods integrated with DRL have
garnered considerable attention due to their expressiveness and flexibility to
define the reward and requirements for different states and actions of the
agent. However, how to leverage Signal Temporal Logic (STL) to guide
multi-agent reinforcement learning reward design remains unexplored. Complex
interactions, heterogeneous goals and critical safety requirements in
multi-agent systems make this problem even more challenging. In this paper, we
propose a novel STL-guided multi-agent reinforcement learning framework. The
STL requirements are designed to include both task specifications according to
the objective of each agent and safety specifications, and the robustness
values of the STL specifications are leveraged to generate rewards. We validate
the advantages of our method through empirical studies. The experimental
results demonstrate significant reward performance improvements compared to
MARL without STL guidance, along with a remarkable increase in the overall
safety rate of the multi-agent systems.
Related papers
- Guiding Multi-agent Multi-task Reinforcement Learning by a Hierarchical Framework with Logical Reward Shaping [16.5526277899717]
This study aims to design a multi-agent cooperative algorithm with logic reward shaping.
Experiments have been conducted on various types of tasks in the Minecraft-like environment.
arXiv Detail & Related papers (2024-11-02T09:03:23Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities.
MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information.
This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks [44.42989163847349]
Large Language Models (LLMs) have led to significant breakthroughs in various natural language processing tasks.
generating factually consistent responses in knowledge-intensive scenarios remains a challenge.
This paper introduces SMART, a novel multi-agent framework that leverages external knowledge to enhance the interpretability and factual consistency of LLM-generated responses.
arXiv Detail & Related papers (2024-07-13T13:58:24Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Prompting Decision Transformer for Few-Shot Policy Generalization [98.0914217850999]
We propose a Prompt-based Decision Transformer (Prompt-DT) to achieve few-shot adaptation in offline RL.
Prompt-DT is a strong few-shot learner without any extra finetuning on unseen target tasks.
arXiv Detail & Related papers (2022-06-27T17:59:17Z) - Safe-Critical Modular Deep Reinforcement Learning with Temporal Logic
through Gaussian Processes and Control Barrier Functions [3.5897534810405403]
Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications.
In this paper, we propose a learning-based control framework consisting of several aspects.
We show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability.
arXiv Detail & Related papers (2021-09-07T00:51:12Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - SAT-MARL: Specification Aware Training in Multi-Agent Reinforcement
Learning [10.82169171060299]
In industrial scenarios, a system's behavior needs to be predictable and lie within defined ranges.
This paper proposes to explicitly transfer functional and non-functional requirements into shaped rewards.
Experiments are carried out on the smart factory, a multi-agent environment modeling an industrial lot-size-one production facility.
arXiv Detail & Related papers (2020-12-14T21:33:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.