Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks
- URL: http://arxiv.org/abs/2407.09893v2
- Date: Mon, 26 Aug 2024 07:54:27 GMT
- Title: Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks
- Authors: Shengbin Yue, Siyuan Wang, Wei Chen, Xuanjing Huang, Zhongyu Wei,
- Abstract summary: Large Language Models (LLMs) have led to significant breakthroughs in various natural language processing tasks.
generating factually consistent responses in knowledge-intensive scenarios remains a challenge.
This paper introduces SMART, a novel multi-agent framework that leverages external knowledge to enhance the interpretability and factual consistency of LLM-generated responses.
- Score: 44.42989163847349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have led to significant breakthroughs in various natural language processing tasks. However, generating factually consistent responses in knowledge-intensive scenarios remains a challenge due to issues such as hallucination, difficulty in acquiring long-tailed knowledge, and limited memory expansion. This paper introduces SMART, a novel multi-agent framework that leverages external knowledge to enhance the interpretability and factual consistency of LLM-generated responses. SMART comprises four specialized agents, each performing a specific sub-trajectory action to navigate complex knowledge-intensive tasks. We propose a multi-agent co-training paradigm, Long-Short Trajectory Learning, which ensures synergistic collaboration among agents while maintaining fine-grained execution by each agent. Extensive experiments on five knowledge-intensive tasks demonstrate SMART's superior performance compared to widely adopted knowledge internalization and knowledge enhancement methods. Our framework can extend beyond knowledge-intensive tasks to more complex scenarios. Our code is available at https://github.com/yueshengbin/SMART.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs' is a cutting-edge multi-agent framework designed to revolutionize the application of large language models.
Smurfs can enhance the model's ability to solve complex tasks at no additional cost.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE) to enhance LLM agents in solving open-world interactive tasks.
WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge.
A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task.
arXiv Detail & Related papers (2024-04-11T03:31:54Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges.
This inadequacy primarily stems from the lack of built-in action knowledge in language agents.
We introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge.
arXiv Detail & Related papers (2024-03-05T16:39:12Z) - Enabling Multi-Agent Transfer Reinforcement Learning via Scenario
Independent Representation [0.7366405857677227]
Multi-Agent Reinforcement Learning (MARL) algorithms are widely adopted in tackling complex tasks that require collaboration and competition among agents.
We introduce a novel framework that enables transfer learning for MARL through unifying various state spaces into fixed-size inputs.
We show significant enhancements in multi-agent learning performance using maneuvering skills learned from other scenarios compared to agents learning from scratch.
arXiv Detail & Related papers (2024-02-13T02:48:18Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
We introduce the Experiential Learning (ExpeL) agent to allow learning from agent experiences without requiring parametric updates.
Our agent autonomously gathers experiences and extracts knowledge using natural language from a collection of training tasks.
At inference, the agent recalls its extracted insights and past experiences to make informed decisions.
arXiv Detail & Related papers (2023-08-20T03:03:34Z) - Multi-Agent Reinforcement Learning Guided by Signal Temporal Logic
Specifications [22.407388715224283]
We propose a novel STL-guided multi-agent reinforcement learning framework.
The STL requirements are designed to include both task specifications according to the objective of each agent and safety specifications, and the values of the STL specifications are leveraged to generate rewards.
arXiv Detail & Related papers (2023-06-11T23:53:29Z) - KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent
Reinforcement Learning [16.167201058368303]
Deep Reinforcement Learning (RL) algorithms have achieved dramatically progress in the multi-agent area.
To alleviate this problem, efficient leveraging of the historical experience is essential.
We propose a method, named "KnowRU" for knowledge reusing.
arXiv Detail & Related papers (2021-03-27T12:38:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.