Towards end-to-end ASP computation
- URL: http://arxiv.org/abs/2306.06821v2
- Date: Tue, 13 Jun 2023 08:11:20 GMT
- Title: Towards end-to-end ASP computation
- Authors: Taisuke Sato, Akihiro Takemura, Katsumi Inoue
- Abstract summary: We propose an end-to-end approach for answer set programming (ASP) and linear algebraically compute stable models satisfying given constraints.
We implement Lin-Zhao's theorem citeLin04 together with constraints directly in vector spaces as numerical minimization of a cost function constructed from a matricized normal logic program.
We empirically test our approach with programming examples including the 3-coloring and Hamiltonian cycle problems.
- Score: 8.804696601388706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an end-to-end approach for answer set programming (ASP) and linear
algebraically compute stable models satisfying given constraints. The idea is
to implement Lin-Zhao's theorem \cite{Lin04} together with constraints directly
in vector spaces as numerical minimization of a cost function constructed from
a matricized normal logic program, loop formulas in Lin-Zhao's theorem and
constraints, thereby no use of symbolic ASP or SAT solvers involved in our
approach. We also propose precomputation that shrinks the program size and
heuristics for loop formulas to reduce computational difficulty. We empirically
test our approach with programming examples including the 3-coloring and
Hamiltonian cycle problems. As our approach is purely numerical and only
contains vector/matrix operations, acceleration by parallel technologies such
as many-cores and GPUs is expected.
Related papers
- Tractable Bounding of Counterfactual Queries by Knowledge Compilation [51.47174989680976]
We discuss the problem of bounding partially identifiable queries, such as counterfactuals, in Pearlian structural causal models.
A recently proposed iterated EM scheme yields an inner approximation of those bounds by sampling the initialisation parameters.
We show how a single symbolic knowledge compilation allows us to obtain the circuit structure with symbolic parameters to be replaced by their actual values.
arXiv Detail & Related papers (2023-10-05T07:10:40Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - A Model-Oriented Approach for Lifting Symmetries in Answer Set
Programming [0.0]
We introduce a new model-oriented Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints.
After targeting simple problems, we aim to extend our method to be applied also for advanced decision problems.
arXiv Detail & Related papers (2022-08-05T10:50:03Z) - Optimization-based Block Coordinate Gradient Coding for Mitigating
Partial Stragglers in Distributed Learning [58.91954425047425]
This paper aims to design a new gradient coding scheme for mitigating partial stragglers in distributed learning.
We propose a gradient coordinate coding scheme with L coding parameters representing L possibly different diversities for the L coordinates, which generates most gradient coding schemes.
arXiv Detail & Related papers (2022-06-06T09:25:40Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - Lifting Symmetry Breaking Constraints with Inductive Logic Programming [2.036811219647753]
We introduce a new model-oriented approach for Answer Set Programming that lifts the Symmetry Breaking Constraints into a set of interpretable first-order constraints.
Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs.
arXiv Detail & Related papers (2021-12-22T11:27:48Z) - Minimal Cycle Representatives in Persistent Homology using Linear
Programming: an Empirical Study with User's Guide [4.46514714749204]
Cycle representatives of persistent homology classes can be used to provide descriptions of topological features in data.
One approach to solving this problem is to optimize the choice of representative against some measure that is meaningful in the context of the data.
arXiv Detail & Related papers (2021-05-14T18:38:48Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.