A Model-Oriented Approach for Lifting Symmetries in Answer Set
Programming
- URL: http://arxiv.org/abs/2208.03095v1
- Date: Fri, 5 Aug 2022 10:50:03 GMT
- Title: A Model-Oriented Approach for Lifting Symmetries in Answer Set
Programming
- Authors: Alice Tarzariol (University of Klagenfurt)
- Abstract summary: We introduce a new model-oriented Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints.
After targeting simple problems, we aim to extend our method to be applied also for advanced decision problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When solving combinatorial problems, pruning symmetric solution candidates
from the search space is essential. Most of the existing approaches are
instance-specific and focus on the automatic computation of Symmetry Breaking
Constraints (SBCs) for each given problem instance. However, the application of
such approaches to large-scale instances or advanced problem encodings might be
problematic since the computed SBCs are propositional and, therefore, can
neither be meaningfully interpreted nor transferred to other instances. As a
result, a time-consuming recomputation of SBCs must be done before every
invocation of a solver. To overcome these limitations, we introduce a new
model-oriented approach for Answer Set Programming that lifts the SBCs of small
problem instances into a set of interpretable first-order constraints using a
form of machine learning called Inductive Logic Programming. After targeting
simple combinatorial problems, we aim to extend our method to be applied also
for advanced decision and optimization problems.
Related papers
- Metaheuristics for the Template Design Problem: Encoding, Symmetry and Hybridisation [0.0]
The template design problem (TDP) is a hard problem with a high number of symmetries which makes solving it more complicated.
This paper explores and analyses a wide range of metaheuristics to tackle the problem with the aim of assessing their suitability for finding template designs.
arXiv Detail & Related papers (2024-11-05T06:29:12Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - Self-adaptive algorithms for quasiconvex programming and applications to
machine learning [0.0]
We provide a self-adaptive step-size strategy that does not include convex line-search techniques and a generic approach under mild assumptions.
The proposed method is verified by preliminary results from some computational examples.
To demonstrate the effectiveness of the proposed technique for large-scale problems, we apply it to some experiments on machine learning.
arXiv Detail & Related papers (2022-12-13T05:30:29Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Efficient lifting of symmetry breaking constraints for complex
combinatorial problems [9.156939957189502]
This work extends the learning framework and implementation of a model-based approach for Answer Set Programming.
In particular, we incorporate a new conflict analysis algorithm in the Inductive Logic Programming system ILASP.
arXiv Detail & Related papers (2022-05-14T20:42:13Z) - Lifting Symmetry Breaking Constraints with Inductive Logic Programming [2.036811219647753]
We introduce a new model-oriented approach for Answer Set Programming that lifts the Symmetry Breaking Constraints into a set of interpretable first-order constraints.
Experiments demonstrate the ability of our framework to learn general constraints from instance-specific SBCs.
arXiv Detail & Related papers (2021-12-22T11:27:48Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNF-based SAT and MaxSAT solvers are central to logic synthesis and verification systems.
In this work, we propose a one-shot model derived from the Transformer architecture to solve the MaxSAT problem.
arXiv Detail & Related papers (2021-07-15T04:47:35Z) - Randomized Stochastic Variance-Reduced Methods for Stochastic Bilevel
Optimization [62.87181271021217]
We consider non-SBO problems that have many applications in machine learning.
This paper proposes fast randomized algorithms for non-SBO problems.
arXiv Detail & Related papers (2021-05-05T18:28:42Z) - QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver
Surrogates [14.905085636501438]
We build surrogate models of QUBO solvers via learning from solver data on a collection of instances of a problem.
In this way, we are able capture the common structure of the instances and their interactions with the solver, and produce good choices of penalty parameters.
QROSS is shown to generalise well to out-of-distribution datasets and different types of QUBO solvers.
arXiv Detail & Related papers (2021-03-19T09:06:12Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.