Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation
- URL: http://arxiv.org/abs/2306.06844v3
- Date: Thu, 6 Jun 2024 12:38:50 GMT
- Title: Provably Efficient Bayesian Optimization with Unknown Gaussian Process Hyperparameter Estimation
- Authors: Huong Ha, Vu Nguyen, Hung Tran-The, Hongyu Zhang, Xiuzhen Zhang, Anton van den Hengel,
- Abstract summary: We propose a new BO method that can sub-linearly converge to the objective function's global optimum.
Our method uses a multi-armed bandit technique (EXP3) to add random data points to the BO process.
We demonstrate empirically that our method outperforms existing approaches on various synthetic and real-world problems.
- Score: 44.53678257757108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian process (GP) based Bayesian optimization (BO) is a powerful method for optimizing black-box functions efficiently. The practical performance and theoretical guarantees of this approach depend on having the correct GP hyperparameter values, which are usually unknown in advance and need to be estimated from the observed data. However, in practice, these estimations could be incorrect due to biased data sampling strategies used in BO. This can lead to degraded performance and break the sub-linear global convergence guarantee of BO. To address this issue, we propose a new BO method that can sub-linearly converge to the objective function's global optimum even when the true GP hyperparameters are unknown in advance and need to be estimated from the observed data. Our method uses a multi-armed bandit technique (EXP3) to add random data points to the BO process, and employs a novel training loss function for the GP hyperparameter estimation process that ensures consistent estimation. We further provide theoretical analysis of our proposed method. Finally, we demonstrate empirically that our method outperforms existing approaches on various synthetic and real-world problems.
Related papers
- Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
We introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes.
NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior.
We demonstrate that the bias introduced by our method can be controlled by multiplying the divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm.
arXiv Detail & Related papers (2023-09-22T06:56:35Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Enhancing Explainability of Hyperparameter Optimization via Bayesian
Algorithm Execution [13.037647287689438]
We study the combination of HPO with interpretable machine learning (IML) methods such as partial dependence plots.
We propose a modified HPO method which efficiently searches for optimum global predictive performance.
Our method returns more reliable explanations of the underlying black-box without a loss of optimization performance.
arXiv Detail & Related papers (2022-06-11T07:12:04Z) - A Stochastic Bundle Method for Interpolating Networks [18.313879914379008]
We propose a novel method for training deep neural networks that are capable of driving the empirical loss to zero.
At each iteration our method constructs a maximum linear approximation, known as the bundle of the objective learning approximation.
arXiv Detail & Related papers (2022-01-29T23:02:30Z) - Accounting for Gaussian Process Imprecision in Bayesian Optimization [0.0]
We study the effect of the Gaussian processes' prior specifications on classical BO's convergence.
We introduce PROBO as a generalization of BO that aims at rendering the method more robust towards prior mean parameter misspecification.
We test our approach against classical BO on a real-world problem from material science and observe PROBO to converge faster.
arXiv Detail & Related papers (2021-11-16T08:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.