Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models
- URL: http://arxiv.org/abs/2501.18790v1
- Date: Thu, 30 Jan 2025 22:29:41 GMT
- Title: Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models
- Authors: Alessio Russo, Alberto Maria Metelli, Marcello Restelli,
- Abstract summary: We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
- Score: 56.92178753201331
- License:
- Abstract: We tackle average-reward infinite-horizon POMDPs with an unknown transition model but a known observation model, a setting that has been previously addressed in two limiting ways: (i) frequentist methods relying on suboptimal stochastic policies having a minimum probability of choosing each action, and (ii) Bayesian approaches employing the optimal policy class but requiring strong assumptions about the consistency of employed estimators. Our work removes these limitations by proving convenient estimation guarantees for the transition model and introducing an optimistic algorithm that leverages the optimal class of deterministic belief-based policies. We introduce modifications to existing estimation techniques providing theoretical guarantees separately for each estimated action transition matrix. Unlike existing estimation methods that are unable to use samples from different policies, we present a novel and simple estimator that overcomes this barrier. This new data-efficient technique, combined with the proposed \emph{Action-wise OAS-UCRL} algorithm and a tighter theoretical analysis, leads to the first approach enjoying a regret guarantee of order $\mathcal{O}(\sqrt{T \,\log T})$ when compared against the optimal policy, thus improving over state of the art techniques. Finally, theoretical results are validated through numerical simulations showing the efficacy of our method against baseline methods.
Related papers
- Multilinear Tensor Low-Rank Approximation for Policy-Gradient Methods in Reinforcement Learning [27.868175900131313]
Reinforcement learning (RL) aims to estimate the action to take given a (time-varying) state.
This paper postulates multi-linear mappings to efficiently estimate the parameters of the RL policy.
We leverage the PARAFAC decomposition to design tensor low-rank policies.
arXiv Detail & Related papers (2025-01-08T23:22:08Z) - Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - The Stochastic Proximal Distance Algorithm [5.3315823983402755]
We propose and analyze a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter.
We extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates.
We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.
arXiv Detail & Related papers (2022-10-21T22:07:28Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Stochastic first-order methods for average-reward Markov decision processes [10.023632561462712]
We study average-reward Markov decision processes (AMDPs) and develop novel first-order methods with strong theoretical guarantees for both policy optimization and policy evaluation.
By combining the policy evaluation and policy optimization parts, we establish sample complexity results for solving AMDPs under both generative and Markovian noise models.
arXiv Detail & Related papers (2022-05-11T23:02:46Z) - Tractable and Near-Optimal Adversarial Algorithms for Robust Estimation
in Contaminated Gaussian Models [1.609950046042424]
Consider the problem of simultaneous estimation of location and variance matrix under Huber's contaminated Gaussian model.
First, we study minimum $f$-divergence estimation at the population level, corresponding to a generative adversarial method with a nonparametric discriminator.
We develop tractable adversarial algorithms with simple spline discriminators, which can be implemented via nested optimization.
The proposed methods are shown to achieve minimax optimal rates or near-optimal rates depending on the $f$-divergence and the penalty used.
arXiv Detail & Related papers (2021-12-24T02:46:51Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Efficient Policy Learning from Surrogate-Loss Classification Reductions [65.91730154730905]
We consider the estimation problem given by a weighted surrogate-loss classification reduction of policy learning.
We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters.
We propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters.
arXiv Detail & Related papers (2020-02-12T18:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.