Underwater Acoustic Target Recognition based on Smoothness-inducing Regularization and Spectrogram-based Data Augmentation
- URL: http://arxiv.org/abs/2306.06945v3
- Date: Tue, 30 Apr 2024 06:59:02 GMT
- Title: Underwater Acoustic Target Recognition based on Smoothness-inducing Regularization and Spectrogram-based Data Augmentation
- Authors: Ji Xu, Yuan Xie, Wenchao Wang,
- Abstract summary: Insufficient data can hinder the ability of recognition systems to support complex modeling.
We propose two strategies to enhance the generalization ability of models in the case of limited data.
- Score: 21.327653766608805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater acoustic target recognition is a challenging task owing to the intricate underwater environments and limited data availability. Insufficient data can hinder the ability of recognition systems to support complex modeling, thus impeding their advancement. To improve the generalization capacity of recognition models, techniques such as data augmentation have been employed to simulate underwater signals and diversify data distribution. However, the complexity of underwater environments can cause the simulated signals to deviate from real scenarios, resulting in biased models that are misguided by non-true data. In this study, we propose two strategies to enhance the generalization ability of models in the case of limited data while avoiding the risk of performance degradation. First, as an alternative to traditional data augmentation, we utilize smoothness-inducing regularization, which only incorporates simulated signals in the regularization term. Additionally, we propose a specialized spectrogram-based data augmentation strategy, namely local masking and replicating (LMR), to capture inter-class relationships. Our experiments and visualization analysis demonstrate the superiority of our proposed strategies.
Related papers
- DEMONet: Underwater Acoustic Target Recognition based on Multi-Expert Network and Cross-Temporal Variational Autoencoder [22.271499386492533]
Building a robust underwater acoustic recognition system in real-world scenarios is challenging due to the complex underwater environment.
We propose DEMONet, which utilizes the detection of envelope modulation on noise (DEMON) to provide robust insights into the shaft frequency or blade counts of targets.
To mitigate noise and spurious modulation spectra in DEMON features, we introduce a cross-temporal alignment strategy and employ a variational autoencoder (VAE) to reconstruct noise-resistant DEMON spectra to replace the raw DEMON features.
arXiv Detail & Related papers (2024-11-05T03:04:51Z) - NUMOSIM: A Synthetic Mobility Dataset with Anomaly Detection Benchmarks [5.852777557137612]
We introduce a synthetic mobility dataset, NUMOSIM, that provides a controlled, ethical, and diverse environment for anomaly benchmarking techniques.
NUMOSIM simulates a wide array of realistic mobility scenarios, encompassing both typical and anomalous behaviours.
We provide open access to the NUMOSIM dataset, along with comprehensive documentation, evaluation metrics, and benchmark results.
arXiv Detail & Related papers (2024-09-04T18:31:24Z) - Enabling Smart Retrofitting and Performance Anomaly Detection for a
Sensorized Vessel: A Maritime Industry Experience [0.21485350418225244]
This study presents a deep learning-driven anomaly detection system augmented with interpretable machine learning models.
We leverage a human-in-the-loop unsupervised process that involves utilizing standard and Long Short-Term Memory (LSTM) autoencoders.
We empirically evaluate the system using real data acquired from the vessel TUCANA and the results involve achieving over 80% precision and 90% recall with the LSTM model used in the process.
arXiv Detail & Related papers (2023-12-30T01:31:54Z) - Advancing underwater acoustic target recognition via adaptive data
pruning and smoothness-inducing regularization [27.039672355700198]
We propose a strategy based on cross-entropy to prune excessively similar segments in training data.
We generate noisy samples and apply smoothness-inducing regularization based on KL divergence to mitigate overfitting.
arXiv Detail & Related papers (2023-04-24T08:30:41Z) - On-the-fly Denoising for Data Augmentation in Natural Language
Understanding [101.46848743193358]
We propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data.
Our method can be applied to general augmentation techniques and consistently improve the performance on both text classification and question-answering tasks.
arXiv Detail & Related papers (2022-12-20T18:58:33Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.