Kernel Random Projection Depth for Outlier Detection
- URL: http://arxiv.org/abs/2306.07056v4
- Date: Wed, 6 Sep 2023 07:53:42 GMT
- Title: Kernel Random Projection Depth for Outlier Detection
- Authors: Akira Tamamori
- Abstract summary: This paper proposes an extension of Random Depth Curve (RPD) datasets to cope with multiple modalities and non-ROCity on data clouds.
In the proposed method, the RPD is computed in the framework of a reproducing space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an extension of Random Projection Depth (RPD) to cope
with multiple modalities and non-convexity on data clouds. In the framework of
the proposed method, the RPD is computed in a reproducing kernel Hilbert space.
With the help of kernel principal component analysis, we expect that the
proposed method can cope with the above multiple modalities and non-convexity.
The experimental results demonstrate that the proposed method outperforms RPD
and is comparable to other existing detection models on benchmark datasets
regarding Area Under the Curves (AUCs) of Receiver Operating Characteristic
(ROC).
Related papers
- Sliced Wasserstein with Random-Path Projecting Directions [49.802024788196434]
We propose an optimization-free slicing distribution that provides a fast sampling for the Monte Carlo estimation of expectation.
We derive the random-path slicing distribution (RPSD) and two variants of sliced Wasserstein, i.e., the Random-Path Projection Sliced Wasserstein (RPSW) and the Importance Weighted Random-Path Projection Sliced Wasserstein (IWRPSW)
arXiv Detail & Related papers (2024-01-29T04:59:30Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - A Provably Efficient Model-Free Posterior Sampling Method for Episodic
Reinforcement Learning [50.910152564914405]
Existing posterior sampling methods for reinforcement learning are limited by being model-based or lack worst-case theoretical guarantees beyond linear MDPs.
This paper proposes a new model-free formulation of posterior sampling that applies to more general episodic reinforcement learning problems with theoretical guarantees.
arXiv Detail & Related papers (2022-08-23T12:21:01Z) - KERPLE: Kernelized Relative Positional Embedding for Length
Extrapolation [72.71398034617607]
KERPLE is a framework that generalizes relative position embedding for extrapolation by kernelizing positional differences.
The diversity of CPD kernels allows us to derive various RPEs that enable length extrapolation in a principled way.
arXiv Detail & Related papers (2022-05-20T01:25:57Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
We focus on the popular Gaussian kernel and on techniques to linearize kernel-based models by means of random feature approximations.
We show that such approaches yield poor results when modelling high-frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance significantly.
arXiv Detail & Related papers (2022-04-12T09:52:36Z) - Hybrid Random Features [60.116392415715275]
We propose a new class of random feature methods for linearizing softmax and Gaussian kernels called hybrid random features (HRFs)
HRFs automatically adapt the quality of kernel estimation to provide most accurate approximation in the defined regions of interest.
arXiv Detail & Related papers (2021-10-08T20:22:59Z) - Deep Random Projection Outlyingness for Unsupervised Anomaly Detection [1.2249546377051437]
The original random projection outlyingness measure is modified and associated with a neural network to obtain an unsupervised anomaly detection method.
The performance of the proposed neural network approach is comparable to a state-of-the-art anomaly detection method.
arXiv Detail & Related papers (2021-06-08T14:13:43Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Unsupervised learning of disentangled representations in deep restricted
kernel machines with orthogonality constraints [15.296955630621566]
Constr-DRKM is a deep kernel method for the unsupervised learning of disentangled data representations.
We quantitatively evaluate the proposed method's effectiveness in disentangled feature learning.
arXiv Detail & Related papers (2020-11-25T11:40:10Z) - Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures [31.986482149142503]
We cast this question as a distribution view by introducing the emphsigned measure
A series of non-PD kernels can be associated with the linear combination of specific finite Borel measures.
Specifically, this solution is also computationally implementable in practice to scale non-PD kernels in large sample cases.
arXiv Detail & Related papers (2020-05-30T12:10:35Z) - Diversity sampling is an implicit regularization for kernel methods [13.136143245702915]
We show that Nystr"om kernel regression with diverse landmarks increases the accuracy of the regression in sparser regions of the dataset.
A greedy is also proposed to select diverse samples of significant size within large datasets when exact DPP sampling is not practically feasible.
arXiv Detail & Related papers (2020-02-20T08:24:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.