Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2106.15307v1
- Date: Tue, 8 Jun 2021 14:13:43 GMT
- Title: Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
- Authors: Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, Claude Adnet,
Olivier Airiau
- Abstract summary: The original random projection outlyingness measure is modified and associated with a neural network to obtain an unsupervised anomaly detection method.
The performance of the proposed neural network approach is comparable to a state-of-the-art anomaly detection method.
- Score: 1.2249546377051437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random projection is a common technique for designing algorithms in a variety
of areas, including information retrieval, compressive sensing and measuring of
outlyingness. In this work, the original random projection outlyingness measure
is modified and associated with a neural network to obtain an unsupervised
anomaly detection method able to handle multimodal normality. Theoretical and
experimental arguments are presented to justify the choices of the anomaly
score estimator, the dimensions of the random projections, and the number of
such projections. The contribution of adapted dropouts is investigated, along
with the affine stability of the proposed method. The performance of the
proposed neural network approach is comparable to a state-of-the-art anomaly
detection method. Experiments conducted on the MNIST, Fashion-MNIST and
CIFAR-10 datasets show the relevance of the proposed approach, and suggest a
possible extension to a semi-supervised setup.
Related papers
- A Mallows-like Criterion for Anomaly Detection with Random Forest Implementation [7.569443648362081]
This paper proposes a novel criterion to select the weights on aggregation of multiple models, wherein the focal loss function accounts for the classification of extremely imbalanced data.
We have evaluated the proposed method on benchmark datasets across various domains, including network intrusion.
arXiv Detail & Related papers (2024-05-29T09:36:57Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Bagged Regularized $k$-Distances for Anomaly Detection [9.899763598214122]
We propose a new distance-based algorithm called bagged regularized $k$-distances for anomaly detection (BRDAD)
Our BRDAD algorithm selects the weights by minimizing the surrogate risk, i.e., the finite sample bound of the empirical risk of the bagged weighted $k$-distances for density estimation (BWDDE)
On the theoretical side, we establish fast convergence rates of the AUC regret of our algorithm and demonstrate that the bagging technique significantly reduces the computational complexity.
arXiv Detail & Related papers (2023-12-02T07:00:46Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
We study the case of monitoring the healthy operation of a deep neural network (DNN) receiving a stream of data.
Using selective prediction principles, we propose a distribution deviation detection method for DNNs.
Our novel detection method performs on-par or better than the state-of-the-art, while consuming substantially lower time.
arXiv Detail & Related papers (2022-10-19T21:27:25Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - A Multi-Scale A Contrario method for Unsupervised Image Anomaly
Detection [0.5156484100374058]
We propose an a contrario framework to detect anomalies in images applying statistical analysis to feature maps obtained via convolutions.
The proposed method is multi-scale and fully unsupervised and is able to detect anomalies in a wide variety of scenarios.
While the end goal of this work is the detection of subtle defects in leather samples for the automotive industry, we show that the same algorithm achieves state of the art results in public anomalies datasets.
arXiv Detail & Related papers (2021-10-05T23:29:58Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
Convolutional Neural Network (CNN) techniques have proven to be very useful in image-based anomaly detection applications.
We introduce a transfer learning framework for anomaly detection based on similarity measure with a Model of Normality (MoN)
We show that with the proposed threshold settings, a significant performance improvement can be achieved.
arXiv Detail & Related papers (2020-11-12T05:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.