Language of Bargaining
- URL: http://arxiv.org/abs/2306.07117v2
- Date: Tue, 16 Apr 2024 13:19:04 GMT
- Title: Language of Bargaining
- Authors: Mourad Heddaya, Solomon Dworkin, Chenhao Tan, Rob Voigt, Alexander Zentefis,
- Abstract summary: We build a novel dataset for studying how the use of language shapes bilateral bargaining.
Our work also reveals linguistic signals that are predictive of negotiation outcomes.
- Score: 60.218128617765046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging an established exercise in negotiation education, we build a novel dataset for studying how the use of language shapes bilateral bargaining. Our dataset extends existing work in two ways: 1) we recruit participants via behavioral labs instead of crowdsourcing platforms and allow participants to negotiate through audio, enabling more naturalistic interactions; 2) we add a control setting where participants negotiate only through alternating, written numeric offers. Despite the two contrasting forms of communication, we find that the average agreed prices of the two treatments are identical. But when subjects can talk, fewer offers are exchanged, negotiations finish faster, the likelihood of reaching agreement rises, and the variance of prices at which subjects agree drops substantially. We further propose a taxonomy of speech acts in negotiation and enrich the dataset with annotated speech acts. Our work also reveals linguistic signals that are predictive of negotiation outcomes.
Related papers
- Assistive Large Language Model Agents for Socially-Aware Negotiation Dialogues [47.977032883078664]
We develop assistive agents based on Large Language Models (LLMs)
We simulate business negotiations by letting two LLM-based agents engage in role play.
A third LLM acts as a remediator agent to rewrite utterances violating norms for improving negotiation outcomes.
arXiv Detail & Related papers (2024-01-29T09:07:40Z) - Be Selfish, But Wisely: Investigating the Impact of Agent Personality in
Mixed-Motive Human-Agent Interactions [24.266490660606497]
We find that self-play RL fails to learn the value of compromise in a negotiation.
We modify the training procedure in two novel ways to design agents with diverse personalities and analyze their performance with human partners.
We find that although both techniques show promise, a selfish agent, which maximizes its own performance while also avoiding walkaways, performs superior to other variants by implicitly learning to generate value for both itself and the negotiation partner.
arXiv Detail & Related papers (2023-10-22T20:31:35Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDial is a novel conversational framework that can generate situated free-form responses with theory-of-mind modeling.
We introduce an explicit mind module that can track the speaker's belief and the speaker's prediction of the listener's belief.
Our framework is applied to both prompting and fine-tuning-based models, and is evaluated across scenarios involving both common ground alignment and negotiation.
arXiv Detail & Related papers (2023-06-27T07:24:32Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - Conversation Disentanglement with Bi-Level Contrastive Learning [26.707584899718288]
Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling.
We propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space.
arXiv Detail & Related papers (2022-10-27T08:41:46Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic
Negotiation Systems [11.43342650898619]
We present CaSiNo: a novel corpus of over a thousand negotiation dialogues in English.
Our design results in diverse and linguistically rich negotiations while maintaining a tractable, closed-domain environment.
We propose and evaluate a multi-task framework to recognize these strategies in a given utterance.
arXiv Detail & Related papers (2021-03-29T16:07:25Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z) - Numerical Abstract Persuasion Argumentation for Expressing Concurrent
Multi-Agent Negotiations [3.7311680121118336]
A negotiation process by 2 agents e1 and e2 can be interleaved by another negotiation process between, say, e1 and e3.
Existing proposals for argumentation-based negotiations have focused primarily on two-agent bilateral negotiations.
We show that the extended theory adapts well to concurrent multi-agent negotiations over scarce resources.
arXiv Detail & Related papers (2020-01-23T01:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.