Strokes2Surface: Recovering Curve Networks From 4D Architectural Design Sketches
- URL: http://arxiv.org/abs/2306.07220v4
- Date: Mon, 10 Jun 2024 09:04:11 GMT
- Title: Strokes2Surface: Recovering Curve Networks From 4D Architectural Design Sketches
- Authors: S. Rasoulzadeh, M. Wimmer, P. Stauss, I. Kovacic,
- Abstract summary: Strokes2Surface is an offline reconstruction pipeline that recovers well-connected curve networks from imprecise 4D sketches.
Inspired by architectural sketching practices, our pipeline combines a classifier and two clustering models to achieve its goal.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Strokes2Surface, an offline geometry reconstruction pipeline that recovers well-connected curve networks from imprecise 4D sketches to bridge concept design and digital modeling stages in architectural design. The input to our pipeline consists of 3D strokes' polyline vertices and their timestamps as the 4th dimension, along with additional metadata recorded throughout sketching. Inspired by architectural sketching practices, our pipeline combines a classifier and two clustering models to achieve its goal. First, with a set of extracted hand-engineered features from the sketch, the classifier recognizes the type of individual strokes between those depicting boundaries (Shape strokes) and those depicting enclosed areas (Scribble strokes). Next, the two clustering models parse strokes of each type into distinct groups, each representing an individual edge or face of the intended architectural object. Curve networks are then formed through topology recovery of consolidated Shape clusters and surfaced using Scribble clusters guiding the cycle discovery. Our evaluation is threefold: We confirm the usability of the Strokes2Surface pipeline in architectural design use cases via a user study, we validate our choice of features via statistical analysis and ablation studies on our collected dataset, and we compare our outputs against a range of reconstructions computed using alternative methods.
Related papers
- 3D Reconstruction from Sketches [0.276240219662896]
We consider the problem of reconstructing a 3D scene from multiple sketches.<n>We propose a pipeline which involves (1) stitching together multiple sketches through use of correspondence points, (2) converting the stitched sketch into a realistic image using a CycleGAN, and (3) estimating that image's depth-map using a pre-trained convolutional neural network based architecture called MegaDepth.
arXiv Detail & Related papers (2025-05-20T17:11:49Z) - Split-and-Fit: Learning B-Reps via Structure-Aware Voronoi Partitioning [50.684254969269546]
We introduce a novel method for acquiring boundary representations (B-Reps) of 3D CAD models.
We apply a spatial partitioning to derive a single primitive within each partition.
We show that our network, coined NVD-Net for neural Voronoi diagrams, can effectively learn Voronoi partitions for CAD models from training data.
arXiv Detail & Related papers (2024-06-07T21:07:49Z) - 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - Unsupervised Representation Learning for Diverse Deformable Shape
Collections [30.271818994854353]
We introduce a novel learning-based method for encoding and manipulating 3D surface meshes.
Our method is specifically designed to create an interpretable embedding space for deformable shape collections.
arXiv Detail & Related papers (2023-10-27T13:45:30Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Reconstructing editable prismatic CAD from rounded voxel models [16.03976415868563]
We introduce a novel neural network architecture to solve this challenging task.
Our method reconstructs the input geometry in the voxel space by decomposing the shape.
During inference, we obtain the CAD data by first searching a database of 2D constrained sketches.
arXiv Detail & Related papers (2022-09-02T16:44:10Z) - Geometric Understanding of Sketches [0.0]
I explore two methods that help a system provide a geometric machine-understanding of sketches, and in-turn help a user accomplish a downstream task.
The first work deals with interpretation of a 2D-line drawing as a graph structure, and also illustrates its effectiveness through its physical reconstruction by a robot.
In the second work, we test the 3D-geometric understanding of a sketch-based system without explicit access to the information about 3D-geometry.
arXiv Detail & Related papers (2022-04-13T23:55:51Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
We present a generative model for complex free-form structures such as stroke-based drawing tasks.
Our approach is suitable for interactive use cases such as auto-completing diagrams.
arXiv Detail & Related papers (2020-06-17T15:22:54Z) - Deep Manifold Prior [37.725563645899584]
We present a prior for manifold structured data, such as surfaces of 3D shapes, where deep neural networks are adopted to reconstruct a target shape using gradient descent.
We show that surfaces generated this way are smooth, with limiting behavior characterized by Gaussian processes, and we mathematically derive such properties for fully-connected as well as convolutional networks.
arXiv Detail & Related papers (2020-04-08T20:47:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.