Deep Manifold Prior
- URL: http://arxiv.org/abs/2004.04242v1
- Date: Wed, 8 Apr 2020 20:47:56 GMT
- Title: Deep Manifold Prior
- Authors: Matheus Gadelha, Rui Wang, Subhransu Maji
- Abstract summary: We present a prior for manifold structured data, such as surfaces of 3D shapes, where deep neural networks are adopted to reconstruct a target shape using gradient descent.
We show that surfaces generated this way are smooth, with limiting behavior characterized by Gaussian processes, and we mathematically derive such properties for fully-connected as well as convolutional networks.
- Score: 37.725563645899584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a prior for manifold structured data, such as surfaces of 3D
shapes, where deep neural networks are adopted to reconstruct a target shape
using gradient descent starting from a random initialization. We show that
surfaces generated this way are smooth, with limiting behavior characterized by
Gaussian processes, and we mathematically derive such properties for
fully-connected as well as convolutional networks. We demonstrate our method in
a variety of manifold reconstruction applications, such as point cloud
denoising and interpolation, achieving considerably better results against
competitive baselines while requiring no training data. We also show that when
training data is available, our method allows developing alternate
parametrizations of surfaces under the framework of AtlasNet, leading to a
compact network architecture and better reconstruction results on standard
image to shape reconstruction benchmarks.
Related papers
- Segmenting objects with Bayesian fusion of active contour models and convnet priors [0.729597981661727]
We propose a novel instance segmentation method geared towards Natural Resource Monitoring (NRM) imagery.
We formulate the problem as Bayesian maximum a posteriori inference which, in learning the individual object contours, incorporates shape, location, and position priors.
In experiments, we tackle the challenging, real-world problem of segmenting individual dead tree crowns and precise contours.
arXiv Detail & Related papers (2024-10-09T20:36:43Z) - Shrinking: Reconstruction of Parameterized Surfaces from Signed Distance Fields [2.1638817206926855]
We propose a novel method for reconstructing explicit parameterized surfaces from Signed Distance Fields (SDFs)
Our approach iteratively contracts a parameterized initial sphere to conform to the target SDF shape, preserving differentiability and surface parameterization throughout.
This enables downstream applications such as texture mapping, geometry processing, animation, and finite element analysis.
arXiv Detail & Related papers (2024-10-04T03:39:15Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - PRS: Sharp Feature Priors for Resolution-Free Surface Remeshing [30.28380889862059]
We present a data-driven approach for automatic feature detection and remeshing.
Our algorithm improves over state-of-the-art by 26% normals F-score and 42% perceptual $textRMSE_textv$.
arXiv Detail & Related papers (2023-11-30T12:15:45Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
We present High-Resolution NeuS, a novel neural implicit surface reconstruction method.
HR-NeuS recovers high-frequency surface geometry while maintaining large-scale reconstruction accuracy.
We demonstrate through experiments on DTU and BlendedMVS datasets that our approach produces 3D geometries that are qualitatively more detailed and quantitatively of similar accuracy compared to previous approaches.
arXiv Detail & Related papers (2023-02-14T02:25:16Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Riggable 3D Face Reconstruction via In-Network Optimization [58.016067611038046]
This paper presents a method for riggable 3D face reconstruction from monocular images.
It jointly estimates a personalized face rig and per-image parameters including expressions, poses, and illuminations.
Experiments demonstrate that our method achieves SOTA reconstruction accuracy, reasonable robustness and generalization ability.
arXiv Detail & Related papers (2021-04-08T03:53:20Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.