Resource-efficient fault-tolerant one-way quantum repeater with code
concatenation
- URL: http://arxiv.org/abs/2306.07224v3
- Date: Tue, 10 Oct 2023 02:54:11 GMT
- Title: Resource-efficient fault-tolerant one-way quantum repeater with code
concatenation
- Authors: Kah Jen Wo, Guus Avis, Filip Rozp\k{e}dek, Maria Flors Mor-Ruiz,
Gregor Pieplow, Tim Schr\"oder, Liang Jiang, Anders S{\o}ndberg S{\o}rensen
and Johannes Borregaard
- Abstract summary: We propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel.
We show that intercontinental distances of up to 10,000 km can be bridged with a minimal resource overhead.
- Score: 1.4162113230024156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One-way quantum repeaters where loss and operational errors are counteracted
by quantum error correcting codes can ensure fast and reliable qubit
transmission in quantum networks. It is crucial that the resource requirements
of such repeaters, for example, the number of qubits per repeater node and the
complexity of the quantum error correcting operations are kept to a minimum to
allow for near-future implementations. To this end, we propose a one-way
quantum repeater that targets both the loss and operational error rates in a
communication channel in a resource-efficient manner using code concatenation.
Specifically, we consider a tree-cluster code as an inner loss-tolerant code
concatenated with an outer 5-qubit code for protection against Pauli errors.
Adopting flag-based stabilizer measurements, we show that intercontinental
distances of up to 10,000 km can be bridged with a minimal resource overhead by
interspersing repeater nodes that each specializes in suppressing either loss
or operational errors. Our work demonstrates how tailored error-correcting
codes can significantly lower the experimental requirements for long-distance
quantum communication.
Related papers
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
The Blind Quantum Computation (BQC) is a delegated protocol, which allows a client to rent a remote quantum server to implement desired quantum computations.
We propose a fault-tolerant blind quantum computation protocol with quantum error-correcting codes to avoid the accumulation and propagation of qubit errors during the computing.
arXiv Detail & Related papers (2023-01-05T08:52:55Z) - All-photonic one-way quantum repeaters [15.3862808585761]
We propose a general framework for all-photonic one-way quantum repeaters based on the measurement-based error correction.
We present a novel decoding scheme, where the error correction process is carried out at the destination based on the accumulated data from the measurements made across the network.
arXiv Detail & Related papers (2022-10-18T18:07:19Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits [0.0]
Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
arXiv Detail & Related papers (2020-11-30T15:14:34Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.