Novel Regression and Least Square Support Vector Machine Learning
Technique for Air Pollution Forecasting
- URL: http://arxiv.org/abs/2306.07301v1
- Date: Sun, 11 Jun 2023 06:56:00 GMT
- Title: Novel Regression and Least Square Support Vector Machine Learning
Technique for Air Pollution Forecasting
- Authors: Dhanalakshmi M and Radha V
- Abstract summary: Improper detection of air pollution benchmarks results in severe complications for humans and living creatures.
A novel technique called, Discretized Regression and Least Square Support Vector (DR-LSSV) based air pollution forecasting is proposed.
The results indicate that the proposed DR-LSSV Technique can efficiently enhance air pollution forecasting performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air pollution is the origination of particulate matter, chemicals, or
biological substances that brings pain to either humans or other living
creatures or instigates discomfort to the natural habitat and the airspace.
Hence, air pollution remains one of the paramount environmental issues as far
as metropolitan cities are concerned. Several air pollution benchmarks are even
said to have a negative influence on human health. Also, improper detection of
air pollution benchmarks results in severe complications for humans and living
creatures. To address this aspect, a novel technique called, Discretized
Regression and Least Square Support Vector (DR-LSSV) based air pollution
forecasting is proposed. The results indicate that the proposed DR-LSSV
Technique can efficiently enhance air pollution forecasting performance and
outperforms the conventional machine learning methods in terms of air pollution
forecasting accuracy, air pollution forecasting time, and false positive rate.
Related papers
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
Methane is one of the most potent greenhouse gases.
Current methane emission monitoring techniques rely on approximate emission factors or self-reporting.
Deep learning methods can be leveraged to automatize the detection of methane leaks in Sentinel-2 satellite multispectral data.
arXiv Detail & Related papers (2023-08-21T19:36:50Z) - IoT-Based Air Quality Monitoring System with Machine Learning for
Accurate and Real-time Data Analysis [0.0]
We propose the development of a portable air quality detection device that can be used anywhere.
The data collected will be stored and visualized using the cloud-based web app ThinkSpeak.
arXiv Detail & Related papers (2023-07-02T14:18:04Z) - AirFormer: Predicting Nationwide Air Quality in China with Transformers [43.48965814702661]
AirFormer is a novel Transformer architecture to collectively predict nationwide air quality in China.
AirFormer reduces prediction errors by 5%8% on 72-hour future predictions.
arXiv Detail & Related papers (2022-11-29T07:22:49Z) - Discretized Linear Regression and Multiclass Support Vector Based Air
Pollution Forecasting Technique [0.0]
This paper proposes an Internet of Things (IoT) enabled system for monitoring and controlling air pollution in the cloud computing environment.
Experiments carried out on the air quality data in the India dataset have revealed the outstanding performance of the proposed LR-MSV method.
arXiv Detail & Related papers (2022-11-28T06:51:59Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Data-driven Real-time Short-term Prediction of Air Quality: Comparison
of ES, ARIMA, and LSTM [0.0]
We use a data-driven approach to predict air quality based on historical data.
Considering prediction accuracy and time complexity, our experiments reveal that for short-term air pollution prediction ES performs better than ARIMA and LSTM.
arXiv Detail & Related papers (2022-11-16T09:37:08Z) - AT-DDPM: Restoring Faces degraded by Atmospheric Turbulence using
Denoising Diffusion Probabilistic Models [64.24948495708337]
Atmospheric turbulence causes significant degradation to image quality by introducing blur and geometric distortion.
Various deep learning-based single image atmospheric turbulence mitigation methods, including CNN-based and GAN inversion-based, have been proposed.
Denoising Diffusion Probabilistic Models (DDPMs) have recently gained some traction because of their stable training process and their ability to generate high quality images.
arXiv Detail & Related papers (2022-08-24T03:13:04Z) - Climate Change & Computer Audition: A Call to Action and Overview on
Audio Intelligence to Help Save the Planet [98.97255654573662]
This work provides an overview of areas in which audio intelligence can contribute to overcome climate-related challenges.
We categorise potential computer audition applications according to the five elements of earth, water, air, fire, and aether.
arXiv Detail & Related papers (2022-03-10T13:32:31Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
Existing models for surface-level air pollution rely on extensive land-use datasets which are often locally restricted and temporally static.
This work proposes a deep learning approach for the prediction of ambient air pollution that only relies on remote sensing data that is globally available and frequently updated.
arXiv Detail & Related papers (2021-08-31T14:58:04Z) - HazeDose: Design and Analysis of a Personal Air Pollution Inhaled Dose
Estimation System using Wearable Sensors [6.284628903370058]
We extend the paradigm to HazeDose system, which can personalize the individuals' air pollution exposure.
Users can visualize their personalized air pollution exposure information via a mobile application.
One algorithm is also introduced to balance the execution time and dosage reduction for alternative routes scenarios.
arXiv Detail & Related papers (2020-05-28T02:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.