A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks
- URL: http://arxiv.org/abs/2306.07303v1
- Date: Sun, 11 Jun 2023 23:13:51 GMT
- Title: A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks
- Authors: Saidul Islam, Hanae Elmekki, Ahmed Elsebai, Jamal Bentahar, Najat
Drawel, Gaith Rjoub, Witold Pedrycz
- Abstract summary: Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data.
transformer models excel in handling long dependencies between input sequence elements and enable parallel processing.
Our survey encompasses the identification of the top five application domains for transformer-based models.
- Score: 60.38369406877899
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transformer is a deep neural network that employs a self-attention mechanism
to comprehend the contextual relationships within sequential data. Unlike
conventional neural networks or updated versions of Recurrent Neural Networks
(RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in
handling long dependencies between input sequence elements and enable parallel
processing. As a result, transformer-based models have attracted substantial
interest among researchers in the field of artificial intelligence. This can be
attributed to their immense potential and remarkable achievements, not only in
Natural Language Processing (NLP) tasks but also in a wide range of domains,
including computer vision, audio and speech processing, healthcare, and the
Internet of Things (IoT). Although several survey papers have been published
highlighting the transformer's contributions in specific fields, architectural
differences, or performance evaluations, there is still a significant absence
of a comprehensive survey paper encompassing its major applications across
various domains. Therefore, we undertook the task of filling this gap by
conducting an extensive survey of proposed transformer models from 2017 to
2022. Our survey encompasses the identification of the top five application
domains for transformer-based models, namely: NLP, Computer Vision,
Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze
the impact of highly influential transformer-based models in these domains and
subsequently classify them based on their respective tasks using a proposed
taxonomy. Our aim is to shed light on the existing potential and future
possibilities of transformers for enthusiastic researchers, thus contributing
to the broader understanding of this groundbreaking technology.
Related papers
- A Review of Transformer-Based Models for Computer Vision Tasks: Capturing Global Context and Spatial Relationships [0.5639904484784127]
Transformer-based models have transformed the landscape of natural language processing (NLP)
These models are renowned for their ability to capture long-range dependencies and contextual information.
We discuss potential research directions and applications of transformer-based models in computer vision.
arXiv Detail & Related papers (2024-08-27T16:22:18Z) - Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey [0.3108011671896571]
This survey paper provides a comprehensive analysis of the utilization of Transformers and LLMs in cyber-threat detection systems.
The fundamentals of Transformers are discussed, including background information on various cyber-attacks and datasets commonly used in this field.
It explores the diverse environments and applications where Transformers and LLMs-based IDS have been implemented, including computer networks, IoT devices, critical infrastructure protection, cloud computing, SDN, as well as in autonomous vehicles.
arXiv Detail & Related papers (2024-08-14T14:28:11Z) - A Survey on Large Language Models from Concept to Implementation [4.219910716090213]
Recent advancements in Large Language Models (LLMs) have broadened the scope of natural language processing (NLP) applications.
This paper investigates the multifaceted applications of these models, with an emphasis on the GPT series.
This exploration focuses on the transformative impact of artificial intelligence (AI) driven tools in revolutionizing traditional tasks like coding and problem-solving.
arXiv Detail & Related papers (2024-03-27T19:35:41Z) - Anatomy of Neural Language Models [0.0]
Transformer-based Language Models (LMs) have led to new state-of-the-art results in a wide spectrum of applications.
Transformers pretrained on language-modeling-like tasks have been widely adopted in computer vision and time series applications.
arXiv Detail & Related papers (2024-01-08T10:27:25Z) - Transformers in Reinforcement Learning: A Survey [7.622978576824539]
Transformers have impacted domains like natural language processing, computer vision, and robotics, where they improve performance compared to other neural networks.
This survey explores how transformers are used in reinforcement learning (RL), where they are seen as a promising solution for addressing challenges such as unstable training, credit assignment, lack of interpretability, and partial observability.
arXiv Detail & Related papers (2023-07-12T07:51:12Z) - A Transformer Framework for Data Fusion and Multi-Task Learning in Smart
Cities [99.56635097352628]
This paper proposes a Transformer-based AI system for emerging smart cities.
It supports virtually any input data and output task types present S&CCs.
It is demonstrated through learning diverse task sets representative of S&CC environments.
arXiv Detail & Related papers (2022-11-18T20:43:09Z) - Transformers in Medical Imaging: A Survey [88.03790310594533]
Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results.
Medical imaging has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields.
We provide a review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues.
arXiv Detail & Related papers (2022-01-24T18:50:18Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Transformers in Vision: A Survey [101.07348618962111]
Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence.
Transformers require minimal inductive biases for their design and are naturally suited as set-functions.
This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline.
arXiv Detail & Related papers (2021-01-04T18:57:24Z) - A Survey on Visual Transformer [126.56860258176324]
Transformer is a type of deep neural network mainly based on the self-attention mechanism.
In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages.
arXiv Detail & Related papers (2020-12-23T09:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.