DuoFormer: Leveraging Hierarchical Representations by Local and Global Attention Vision Transformer
- URL: http://arxiv.org/abs/2506.12982v1
- Date: Sun, 15 Jun 2025 22:42:57 GMT
- Title: DuoFormer: Leveraging Hierarchical Representations by Local and Global Attention Vision Transformer
- Authors: Xiaoya Tang, Bodong Zhang, Man Minh Ho, Beatrice S. Knudsen, Tolga Tasdizen,
- Abstract summary: We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs)<n> Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations.<n>These representations are adapted for transformer input through an innovative patch tokenization process, preserving the inherited multi-scale inductive biases.
- Score: 1.456352735394398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the widespread adoption of transformers in medical applications, the exploration of multi-scale learning through transformers remains limited, while hierarchical representations are considered advantageous for computer-aided medical diagnosis. We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs). Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations. These representations are adapted for transformer input through an innovative patch tokenization process, preserving the inherited multi-scale inductive biases. We also introduce a scale-wise attention mechanism that directly captures intra-scale and inter-scale associations. This mechanism complements patch-wise attention by enhancing spatial understanding and preserving global perception, which we refer to as local and global attention, respectively. Our model significantly outperforms baseline models in terms of classification accuracy, demonstrating its efficiency in bridging the gap between Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). The components are designed as plug-and-play for different CNN architectures and can be adapted for multiple applications. The code is available at https://github.com/xiaoyatang/DuoFormer.git.
Related papers
- DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
We propose a novel hierarchical transformer model that adeptly integrates the feature extraction capabilities of Convolutional Neural Networks (CNNs) with the advanced representational potential of Vision Transformers (ViTs)
Addressing the lack of inductive biases and dependence on extensive training datasets in ViTs, our model employs a CNN backbone to generate hierarchical visual representations.
These representations are then adapted for transformer input through an innovative patch tokenization.
arXiv Detail & Related papers (2024-07-18T22:15:35Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
We propose a self-supervised pre-training (SSP) method for table structure recognition transformers.
We discover that the performance gap between the linear projection transformer and the hybrid CNN-transformer can be mitigated by SSP of the visual encoder in the TSR model.
arXiv Detail & Related papers (2024-02-23T19:34:06Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - ConvFormer: Combining CNN and Transformer for Medical Image Segmentation [17.88894109620463]
We propose a hierarchical CNN and Transformer hybrid architecture, called ConvFormer, for medical image segmentation.
Our ConvFormer, trained from scratch, outperforms various CNN- or Transformer-based architectures, achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-11-15T23:11:22Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Do Vision Transformers See Like Convolutional Neural Networks? [45.69780772718875]
Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks.
Are they acting like convolutional networks, or learning entirely different visual representations?
We find striking differences between the two architectures, such as ViT having more uniform representations across all layers.
arXiv Detail & Related papers (2021-08-19T17:27:03Z) - ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias [76.16156833138038]
We propose a novel Vision Transformer Advanced by Exploring intrinsic IB from convolutions, ie, ViTAE.
ViTAE has several spatial pyramid reduction modules to downsample and embed the input image into tokens with rich multi-scale context.
In each transformer layer, ViTAE has a convolution block in parallel to the multi-head self-attention module, whose features are fused and fed into the feed-forward network.
arXiv Detail & Related papers (2021-06-07T05:31:06Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.