Active Globally Explainable Learning for Medical Images via Class
Association Embedding and Cyclic Adversarial Generation
- URL: http://arxiv.org/abs/2306.07306v1
- Date: Mon, 12 Jun 2023 04:51:32 GMT
- Title: Active Globally Explainable Learning for Medical Images via Class
Association Embedding and Cyclic Adversarial Generation
- Authors: Ruitao Xie, Jingbang Chen, Limai Jiang, Rui Xiao, Yi Pan, Yunpeng Cai
- Abstract summary: Current studies on explainable AI (XAI) lack the efficiency of extracting global knowledge about the learning task.
We propose the class association embedding (CAE) approach to address these issues.
We adopt the framework on medical image classification tasks, which show that more precise saliency maps with powerful context-aware representation can be achieved.
- Score: 3.0638691735355374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainability poses a major challenge to artificial intelligence (AI)
techniques. Current studies on explainable AI (XAI) lack the efficiency of
extracting global knowledge about the learning task, thus suffer deficiencies
such as imprecise saliency, context-aware absence and vague meaning. In this
paper, we propose the class association embedding (CAE) approach to address
these issues. We employ an encoder-decoder architecture to embed sample
features and separate them into class-related and individual-related style
vectors simultaneously. Recombining the individual-style code of a given sample
with the class-style code of another leads to a synthetic sample with preserved
individual characters but changed class assignment, following a cyclic
adversarial learning strategy. Class association embedding distills the global
class-related features of all instances into a unified domain with well
separation between classes. The transition rules between different classes can
be then extracted and further employed to individual instances. We then propose
an active XAI framework which manipulates the class-style vector of a certain
sample along guided paths towards the counter-classes, resulting in a series of
counter-example synthetic samples with identical individual characters.
Comparing these counterfactual samples with the original ones provides a
global, intuitive illustration to the nature of the classification tasks. We
adopt the framework on medical image classification tasks, which show that more
precise saliency maps with powerful context-aware representation can be
achieved compared with existing methods. Moreover, the disease pathology can be
directly visualized via traversing the paths in the class-style space.
Related papers
- Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
We propose a generative explanation model that combines the advantages of global and local knowledge.
Class association embedding (CAE) encodes each sample into a pair of separated class-associated and individual codes.
Building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones.
arXiv Detail & Related papers (2024-06-12T07:41:00Z) - Semantic-Aware Dual Contrastive Learning for Multi-label Image
Classification [8.387933969327852]
We propose a novel semantic-aware dual contrastive learning framework that incorporates sample-to-sample contrastive learning.
Specifically, we leverage semantic-aware representation learning to extract category-related local discriminative features.
Our proposed method is effective and outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-07-19T01:57:31Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
We propose a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis.
The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets.
arXiv Detail & Related papers (2022-06-27T08:39:51Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
We present a novel pipeline for pool-based Active Learning.
Our method exploits accessible unlabelled examples during training to estimate their co-relation with the labelled examples.
Visual Transformer models non-local visual concept dependency between labelled and unlabelled examples.
arXiv Detail & Related papers (2021-06-07T17:13:59Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
We propose a two-stage deep neural network for zero-shot action recognition.
In the sampling stage, we utilize a generative adversarial networks (GAN) trained by action features and word vectors of seen classes.
In the classification stage, we construct a knowledge graph based on the relationship between word vectors of action classes and related objects.
arXiv Detail & Related papers (2021-05-25T09:34:42Z) - Generative Multi-Label Zero-Shot Learning [136.17594611722285]
Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training.
Our work is the first to tackle the problem of multi-label feature in the (generalized) zero-shot setting.
Our cross-level fusion-based generative approach outperforms the state-of-the-art on all three datasets.
arXiv Detail & Related papers (2021-01-27T18:56:46Z) - Symbiotic Adversarial Learning for Attribute-based Person Search [86.7506832053208]
We present a symbiotic adversarial learning framework, called SAL.Two GANs sit at the base of the framework in a symbiotic learning scheme.
Specifically, two different types of generative adversarial networks learn collaboratively throughout the training process.
arXiv Detail & Related papers (2020-07-19T07:24:45Z) - Latent Embedding Feedback and Discriminative Features for Zero-Shot
Classification [139.44681304276]
zero-shot learning aims to classify unseen categories for which no data is available during training.
Generative Adrial Networks synthesize unseen class features by leveraging class-specific semantic embeddings.
We propose to enforce semantic consistency at all stages of zero-shot learning: training, feature synthesis and classification.
arXiv Detail & Related papers (2020-03-17T17:34:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.