Stochastic errors in quantum instruments
- URL: http://arxiv.org/abs/2306.07418v1
- Date: Mon, 12 Jun 2023 20:48:07 GMT
- Title: Stochastic errors in quantum instruments
- Authors: Darian McLaren, Matthew A. Graydon, Joel J. Wallman
- Abstract summary: Fault-tolerant quantum computation requires non-destructive quantum measurements with classical feed-forward.
We define a class of quantum instruments that correspond to errors and thus are amenable to standard analysis methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault-tolerant quantum computation requires non-destructive quantum
measurements with classical feed-forward. Many experimental groups are actively
working towards implementing such capabilities and so they need to be
accurately evaluated. As with unitary channels, an arbitrary imperfect
implementation of a quantum instrument is difficult to analyze. In this paper,
we define a class of quantum instruments that correspond to stochastic errors
and thus are amenable to standard analysis methods. We derive efficiently
computable upper- and lower-bounds on the diamond distance between two quantum
instruments. Furthermore, we show that, for the special case of uniform
stochastic instruments, the diamond distance and the natural generalization of
the process infidelity to quantum instruments coincide and are equal to a
well-defined probability of an error occurring during the measurement.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Scalable evaluation of incoherent infidelity in quantum devices [0.0]
We introduce the incoherent infidelity as a measure of incoherent errors.
This method is applicable to generic quantum evolutions subjected to time-dependent Markovian noise.
It provides an error quantifier for the target circuit, rather than an error averaged over many circuits or quantum gates.
arXiv Detail & Related papers (2023-05-30T19:03:42Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Mitigating Quantum Errors via Truncated Neumann Series [10.04862322536857]
We propose a unified framework that can mitigate quantum gate and measurement errors in computing quantum expectation values.
The essential idea is to cancel the effect of quantum error by approximating its inverse via linearly combining quantum errors of different orders.
We test this framework for different quantum errors and find that the computation accuracy is substantially improved.
arXiv Detail & Related papers (2021-11-01T04:16:49Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Robust decompositions of quantum states [0.0]
We establish a classical-quantum complexity equivalence using a noisy quantum circuit model.
We construct two distinct variants, both of which are compatible with machine-learning methodology.
They both enable efficiently computable lower bounds on von Neumann entropy and thus can be used as finite-temperature variational quantum Monte Carlo methods.
arXiv Detail & Related papers (2020-03-09T14:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.