Question Decomposition Tree for Answering Complex Questions over
Knowledge Bases
- URL: http://arxiv.org/abs/2306.07597v1
- Date: Tue, 13 Jun 2023 07:44:29 GMT
- Title: Question Decomposition Tree for Answering Complex Questions over
Knowledge Bases
- Authors: Xiang Huang, Sitao Cheng, Yiheng Shu, Yuheng Bao, Yuzhong Qu
- Abstract summary: We propose Question Decomposition Tree (QDT) to represent the structure of complex questions.
Inspired by recent advances in natural language generation (NLG), we present a two-staged method called Clue-Decipher to generate QDT.
To verify that QDT can enhance KBQA task, we design a decomposition-based KBQA system called QDTQA.
- Score: 9.723321745919186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge base question answering (KBQA) has attracted a lot of interest in
recent years, especially for complex questions which require multiple facts to
answer. Question decomposition is a promising way to answer complex questions.
Existing decomposition methods split the question into sub-questions according
to a single compositionality type, which is not sufficient for questions
involving multiple compositionality types. In this paper, we propose Question
Decomposition Tree (QDT) to represent the structure of complex questions.
Inspired by recent advances in natural language generation (NLG), we present a
two-staged method called Clue-Decipher to generate QDT. It can leverage the
strong ability of NLG model and simultaneously preserve the original questions.
To verify that QDT can enhance KBQA task, we design a decomposition-based KBQA
system called QDTQA. Extensive experiments show that QDTQA outperforms previous
state-of-the-art methods on ComplexWebQuestions dataset. Besides, our
decomposition method improves an existing KBQA system by 12% and sets a new
state-of-the-art on LC-QuAD 1.0.
Related papers
- Prompting Large Language Models with Chain-of-Thought for Few-Shot
Knowledge Base Question Generation [19.327008532572645]
Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question.
We propose Chain-of-Thought prompting, which is an in-context learning strategy for reasoning.
We conduct extensive experiments over three public KBQG datasets.
arXiv Detail & Related papers (2023-10-12T15:08:14Z) - Reasoning over Hierarchical Question Decomposition Tree for Explainable
Question Answering [83.74210749046551]
We propose to leverage question decomposing for heterogeneous knowledge integration.
We propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT)
Experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly.
arXiv Detail & Related papers (2023-05-24T11:45:59Z) - Ask to Understand: Question Generation for Multi-hop Question Answering [11.626390908264872]
Multi-hop Question Answering (QA) requires the machine to answer complex questions by finding scattering clues and reasoning from multiple documents.
We propose a novel method to complete multi-hop QA from the perspective of Question Generation (QG)
arXiv Detail & Related papers (2022-03-17T04:02:29Z) - ConditionalQA: A Complex Reading Comprehension Dataset with Conditional
Answers [93.55268936974971]
We describe a Question Answering dataset that contains complex questions with conditional answers.
We call this dataset ConditionalQA.
We show that ConditionalQA is challenging for many of the existing QA models, especially in selecting answer conditions.
arXiv Detail & Related papers (2021-10-13T17:16:46Z) - SYGMA: System for Generalizable Modular Question Answering OverKnowledge
Bases [57.89642289610301]
We present SYGMA, a modular approach facilitating general-izability across multiple knowledge bases and multiple rea-soning types.
We demonstrate effectiveness of our system by evaluating on datasets belonging to two distinct knowledge bases,DBpedia and Wikidata.
arXiv Detail & Related papers (2021-09-28T01:57:56Z) - Complex Knowledge Base Question Answering: A Survey [41.680033017518376]
Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB)
In recent years, researchers propose a large number of novel methods, which looked into the challenges of answering complex questions.
We present two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods.
arXiv Detail & Related papers (2021-08-15T08:14:54Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
Question Answering (QA) over Knowledge Base (KB) aims to automatically answer natural language questions.
Researchers have shifted their attention from simple questions to complex questions, which require more KB triples and constraint inference.
arXiv Detail & Related papers (2020-07-26T07:13:32Z) - KQA Pro: A Dataset with Explicit Compositional Programs for Complex
Question Answering over Knowledge Base [67.87878113432723]
We introduce KQA Pro, a dataset for Complex KBQA including 120K diverse natural language questions.
For each question, we provide the corresponding KoPL program and SPARQL query, so that KQA Pro serves for both KBQA and semantic parsing tasks.
arXiv Detail & Related papers (2020-07-08T03:28:04Z) - Unsupervised Question Decomposition for Question Answering [102.56966847404287]
We propose an algorithm for One-to-N Unsupervised Sequence Sequence (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions.
We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets.
arXiv Detail & Related papers (2020-02-22T19:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.